#### Class:

#### \_\_\_\_\_ Date: \_\_\_\_

ID: X

## **Spring Practice test**

#### **Multiple Choice**

Identify the choice that best completes the statement or answers the question. \*\*\*You will have 75 questions covering first and second semester on your final exam. \*\*\*You are responsible for all information in each of the chapters. \*\*\*Your final exam is 20% of your grade.

\*\*\*You must have your own calculator, pencil and your extra credit.

1. What is the volume of 63.8 g of Carbon Dioxide at a pressure of 75.0 kPa and a temperature of 345 K? 8.23 L 78.4 L a. c. 22.4 L 55.4 L b. d. 2. Which compound represents a molecular compound? a.  $S_2Br_6$ c. HBr b. KF d. NaNO<sub>3</sub> What is the correct noble gas electron configuration for a Chloride ion? 3. a. [Ne]3s<sup>2</sup>3p<sup>6</sup> c.  $[Ar]3s^23p^5$ b. [Ne]3s<sup>2</sup>3p<sup>5</sup> d.  $[Ar]3s^23p^6$ 4. Which statement *best* describes the density of an atom's nucleus? The nucleus occupies very little of the The nucleus occupies most of the atom's a. c. atom's volume and contains little of its volume but contains little of its mass. mass. b. The nucleus occupies very little of the d. The nucleus occupies most of the atom's atom's volume but contains most of its volume and contains most of its mass. mass. 5. The average kinetic energy of gas particles will be directly proportional to The number of moles of a gas. c. The Pressure of the gas. a. b. The Celsius temperature of the gas. d. The ideal gas constant. 6. The name for an alkyl group that contains two carbon atoms is \_\_\_\_\_ a. dimethyl c. diphenyl ethyl propyl b. d. 7. A cylinder with a tightly fitted piston is shown in the diagram below. Air at constant temperature As the piston moves downward, the pressure inside the cylinder... a. Increases Decreases C. b. Fluctuates Stays the same d. 8. How do the isotopes hydrogen-1 and hydrogen-2 differ? Hydrogen-1 has no protons; Hydrogen-2 Hydrogen-1 has one neutron; a. c. Hydrogen-2 has two protons.. has one. b. Hydrogen-1 has one protons; Hydrogen-2 d. Hydrogen-1 has one protons; Hydrogen-2 has two. has one protone and one neutron.

9.

# $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$

In this reaction, how many grams of Fe<sub>2</sub>O<sub>3</sub> are required to completely react with 84 grams of CO?

- a.80c.64b.160d.1400
- 10. The volume of 400 mL of chlorine gas at 400 mm Hg is decreased to 200 mL at constant temperature. What is the new gas pressure?
  - a. 300 mm Hg
- c. 650 mm Hg
- b. 800 mm Hg d. 400 mm Hg



11.

Which substance has the highest density?

| a. | А | c. | С |
|----|---|----|---|
| b. | В | d. | D |

- 12. How many atoms are in a chromium sample with a mass of 13 grams? a.  $3.3 \times 10^{23}$  c.  $1.9 \times 10^{26}$ 
  - b.  $1.5 \times 10^{23}$  d.  $2.4 \times 10^{24}$
  - \_\_\_\_\_ 13. What type of shape is the second C creating?

- a. tetrahedral c. bent
- b. trigonal planar d. trigonal pyramidal
- \_\_\_\_\_ 14. Which group of elements will have the strongest attraction for electrons? a. Alkali Metals c. Noble Gases
  - b. Halogens d. Transition Metals

\_\_\_\_ 15.

# **Results of Firing Alpha Particles at Gold Foil**

| Observation:                                                                  | Proportion: |
|-------------------------------------------------------------------------------|-------------|
| Alpha particles went straight through gold foil.                              | > 98%       |
| Alpha particles went through gold<br>foil but were deflected at large angles. | ≈ 2%        |
| Alpha particles bounced off gold foil.                                        | ≂ 0.01%     |

## What information do the experimental results above reveal about the nucleus of the gold atom?

|         | a.       | The nucleus is small and is the densest part of the atom             | c.   | The nucleus contains less than half the mass of the atom    |
|---------|----------|----------------------------------------------------------------------|------|-------------------------------------------------------------|
|         | b.       | The nucleus is large and occupies most of the atom's space.          | d.   | The nucleus contains small positive and negative particles. |
| <br>16. | How      | w many oxygen atoms are there in 4.75 mol                            | of C | alcium Dichromate?                                          |
|         | a.       | 52.5 oxygen atoms                                                    | c.   | 3.01 x 10 <sup>24</sup> oxygen atoms                        |
|         | b.       | $2.00 \ge 10^{25}$ oxygen atoms                                      | d.   | 7 oxygen atoms                                              |
| <br>17. | In v     | which of the following is the number of                              | neut | rons correctly represented?                                 |
|         | a.       | $^{24}_{12}$ Mg has 24 neutrons                                      | d.   | $^{19}_{9}$ F has 0 neutrons                                |
|         | b.<br>c. | $^{75}_{33}$ As has 108 neutrons<br>$^{197}_{79}$ Au has 79 neutrons | e.   | $^{238}_{92}$ U has 146 neutrons                            |
| <br>18. | List     | t the following atoms in order of increas                            | ing  | first ionization energy: B, Li, C, F, O.                    |
|         | a.       | B, Li, C, O, F                                                       | c.   | F, O, C, B, Li                                              |
|         | b.       | Li, B, F, O, C                                                       | d.   | Li, B, C, O, F                                              |
| <br>19. | Wh       | ich of the following is a monatomic gas at S                         | TP?  |                                                             |
|         | a.       | Nitrogen                                                             | c.   | Florine                                                     |
|         | b.       | Chlorine                                                             | d.   | Helium                                                      |

|         | B C D E                                                                                                      |                                                                  |
|---------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
|         |                                                                                                              |                                                                  |
| 20.     | Time                                                                                                         |                                                                  |
| <br>    | According to the above figure, what is happening a                                                           | s a substance goes from point A to point B?                      |
|         | a. A gas is condensing c.<br>b. A gas is getting colder d.                                                   | A solid is getting warmer<br>Ice is melting                      |
| <br>21. | Alkanes are hydrocarbons that contain what type o                                                            | f bonds?                                                         |
|         | a. ionic bonds c.                                                                                            | single covalent bonds only                                       |
|         | b. at least one double bond d.                                                                               | at least one triple bond                                         |
| <br>22. | The temperature of a substance is 23 degrees Celsin                                                          | us. Convert these degrees to Kelvin.                             |
|         | a. 500K C.<br>b. 273K d.                                                                                     | -250K<br>296K                                                    |
| <br>23. | Standard temperature and pressure (STP) are define                                                           | ed as                                                            |
|         | a. 0-K and 1-atm c.                                                                                          | 0-K and 1-kPa                                                    |
|         | b. $0^{\circ}C$ and $1^{\circ}KPa$ d.                                                                        | 0-°C and 101.3 kPa                                               |
| <br>24. | The specific heat of copper is about 0.4 joules/gram<br>of a 60 gram sample of copper from 20.0 $\%$ to 60.0 | $n^{\circ}$ C. How much heat is needed to change the temperature |
|         | a. 960 J c.                                                                                                  | 720 J                                                            |
|         | b. 1200 J d.                                                                                                 | 480 J                                                            |
| <br>25. | How many valence electrons does a carbon atom h                                                              | ave?                                                             |
|         | a. 1 c.                                                                                                      | 3                                                                |
| 0.0     | b. 2 d.                                                                                                      | 4                                                                |
| <br>26. | The splitting of a nucleus into smaller nuclei is known a Fusion                                             | Wn as<br>Fission                                                 |
|         | b. Hydrolysis                                                                                                | 1 1551011                                                        |
| <br>27. | Select the correct statement about subatomic partic                                                          | les.                                                             |
|         | a. Electrons, protons, and neutrons all have c.                                                              | Electrons are negatively charged, occupy                         |
|         | the same mass.                                                                                               | most of the volume and are the lightest subatomic particles      |
|         | b. Neutrons have no charge and are the d.                                                                    | Protons are positively charged, found in                         |
|         | lightest subatomic particles.                                                                                | the nucleus and the lightest subatomic                           |
| •       |                                                                                                              | particles.                                                       |
| <br>28. | The energy released by the sun is a result from nuclear                                                      | Fusion                                                           |
|         | b. Fission                                                                                                   | 1 451011                                                         |
| <br>29. | What is the correct electron configuration for Gold                                                          | ?                                                                |
|         | a. $[Rn]6s^25d^9$ c.                                                                                         | [Xe]6s <sup>2</sup> 5d <sup>9</sup>                              |
|         | b. [Xe] $6s^24f^{14}5d^9$ d.                                                                                 | $[Rn]6s^24f^{14}5d^9$                                            |
| <br>30. | How many carbons are in a molecule of hexane?                                                                | 2                                                                |
|         | a. 5 C.<br>b. 6 d                                                                                            | 5 4                                                              |
|         |                                                                                                              |                                                                  |

| <br>31. | What must happen for liquid water to freeze?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                                                                       |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------|
|         | a. The water must absorb kinetic energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | c.        | The water must release energy to the                                  |
|         | from the surroundings.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _         | surroundings.                                                         |
|         | b. The water molecules must begin to move                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d.        | The water molecules must begin to move                                |
|         | in random patterns.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | taster                                                                |
| <br>32. | Under which of the following sets of condition:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s wil     | 1 a 0.50 mole sample of helium occupy a volume of 11.2                |
|         | liters? $273 K \text{ and } 1.0 \text{ atm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0         | 272 K and 0 50 atm                                                    |
|         | a. $275$ K and $1.0$ atm<br>b. $208$ K and $0.50$ atm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | с.<br>d   | 272 K and 1.50 atm                                                    |
|         | 0. 298 K and 0.50 atm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | u.        |                                                                       |
| <br>33. | Which of the following elements will require th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ne m      | ost energy to remove an electron from its outer energy                |
|         | level?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0         | Cocium                                                                |
|         | a. Chiofine<br>b. Neon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | c.<br>d   | Lantanum                                                              |
| 24      | Which of the following structures are poler?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | u.        | Lantanum                                                              |
| <br>54. | which of the following structures are polar?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C         | PH.                                                                   |
|         | CH <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C.        | 1113                                                                  |
|         | h.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d.        |                                                                       |
|         | НСР                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | C <sub>2</sub> H <sub>2</sub>                                         |
| 35      | $C_0H_{10} + O_0> CO_0 + H_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | )         |                                                                       |
| <br>55. | $\frac{1}{2} = \frac{1}{2} = \frac{1}$ | telv      | react to produce exactly 36 liters of $H_{\bullet}\Omega^{2}$ Balance |
|         | the equation first!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ucry      | react to produce exactly 50 mers of 1120? Datance                     |
|         | 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C         | 27 I                                                                  |
|         | b $36L$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d.        | 4 L                                                                   |
| 36      | What type of reaction is the reaction below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ?         |                                                                       |
| <br>50. | what type of reaction is the reaction below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •         |                                                                       |
|         | $Fe_2O_3 \rightarrow Fe_+O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                                                                       |
|         | a. Synthesis/Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | c.        | Single Replacement                                                    |
|         | b. Decomposition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d.        | Combustion                                                            |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                                                                       |
| <br>37. | $0_{3}1_{8} + 0_{2} - 0_{2} + 1_{2}0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                                                                       |
|         | This chemical equation represents the combust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ion c     | of propane. When correctly balanced, the coefficient for              |
|         | water is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                                                                       |
|         | a. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | с.        | 4                                                                     |
| • •     | b. 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d.        | 16                                                                    |
| <br>38. | What is the density of 1 mole of NO <sub>2</sub> gas at <u>ST</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>P?</u> |                                                                       |
|         | a. $0.513 \text{ g/L}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | с.        | 1.34 g/L                                                              |
| • •     | b. 1.03 g/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | a.        | 2.05 g/L                                                              |
| <br>39. | $(NH_4)_3PO_4 + FeSO_4> Fe_3(P)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $(O_4)_2$ | $_2 + \_ (NH_4)_2SO_4$                                                |
|         | How many grams of ammonium sulfate wi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ll be     | produced when 100. g of ammonium phosphate react                      |
|         | completely with iron (II) sulfate?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                                                                       |
|         | a. 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | с.        | 186.9                                                                 |
| 4.0     | D. 132.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a.        | 149.5                                                                 |
| <br>40. | Theoretically, when an ideal gas in a closed con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ntain     | er cools, the pressure will drop steadily until the pressure          |
|         | inside is essentially that of a vacuum. At what is $273 K$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lemp      | O K                                                                   |
|         | a. $-2/3$ N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | С.<br>1   |                                                                       |
|         | D400 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a.        | UC                                                                    |

| 41.     | Why is boiling a cooling process?                        |                 |                                                 |
|---------|----------------------------------------------------------|-----------------|-------------------------------------------------|
|         | a. The particles with less potential energy              | c.              | The particles with more potential energy        |
|         | leave the liquid first, leaving the                      |                 | leave the liquid first, leaving the             |
|         | remaining particles with more potential                  |                 | remaining particles with less potential         |
|         | h The particles with less kinetic energy                 | d               | The particles with more kinetic energy          |
|         | leave the liquid first, leaving the                      | u.              | leave the liquid first, leaving the             |
|         | remaining particles with more kinetic                    |                 | remaining particles with less kinetic           |
|         | energy.                                                  |                 | energy.                                         |
| <br>42. | How do the isotopes carbon-12 and carbon-14              | diffe           | r?                                              |
|         | a. Carbon-12 has no neutrons; Carbon-14                  | c.              | Carbon-12 has no protons; Carbon-14 has         |
|         | has two                                                  | 4               | SIX.<br>Combon 12 has six neutrons: Carbon 14   |
|         | Carbon-12 has two more electrons than<br>Carbon-14.      | a.              | has eight neutrons.                             |
| <br>43. | Substance X a molecular compound that is a lie           | quid            | at room temperature. Substance Z is a molecular |
|         | compound that is a solid at room temperature.            | Whi             | The intermolecular forces are stronger in       |
|         | randomly compared to substance X                         | ι.              | substance Z                                     |
|         | b. The intermolecular forces are stronger in             | d.              | Substance X most likely has a higher            |
|         | substance X.                                             |                 | molecular mass than substance Z.                |
| <br>44. | Which of the following is <b>not</b> an example of       | of an           | emulsion?                                       |
|         | a. A cloudy layer formed when a                          | c.              | Mayonnaise                                      |
|         | mixture of biodiesel and water is                        |                 |                                                 |
|         | shaken                                                   |                 | 1 1                                             |
|         | b. Oil and water that is clearly separated               | d.              | pancake batter                                  |
| <br>45. | Select the set of coefficients that properly b           | balar           | nce the equation below.                         |
|         | $Fe_2O_2 \rightarrow Fe_2 + O_2$                         |                 |                                                 |
|         | a. 1, 2, 3                                               | c.              | 2, 2, 3                                         |
|         | b. 2, 4, 3                                               | d.              | 3, 4, 4                                         |
| <br>46. | What is the correct name for this compound: H            | NO <sub>3</sub> | ?                                               |
|         | a. Nitrous Acid                                          | c.              | Nitric Acid                                     |
|         | b. Hydronitrous Acid                                     | d.              | Hydronitric Acid                                |
| <br>47. | What is the volume of a 200-gram sample of ni            | itroge          | en gas at STP?                                  |
|         | a. 125-L<br>b. 250 L                                     | c.<br>d         | 320-L<br>160 I                                  |
| 18      | U. 250-L<br>How many moles of carbon-12 are contained it | u.<br>neva      | ctly 6 grams of carbon-122                      |
| <br>40. | a. 2.0 moles                                             | с.              | $6.02 \times 10^{23}$ moles                     |
|         | b. 0.5 moles                                             | d.              | $3.01 \times 10^{23}$ moles                     |
| <br>49. | Which of the following ions should have the la           | rgest           | ionic radius?                                   |
|         | a. Iron II ion                                           | c.              | Potassium Ion                                   |
|         | b. Bromide ion                                           | d.              | Selenide ion                                    |
| <br>50. | Which of these is an example of an exothermic            | chei            | mical process?                                  |
|         | a. evaporation of water                                  | с.              | combustion of gasoline                          |
|         | b. photosynthesis of glucose                             | d.              | melting ice                                     |

| 51.     | Which of the f           | following are nonpolar?         |                 |                                                                |
|---------|--------------------------|---------------------------------|-----------------|----------------------------------------------------------------|
|         | a.                       |                                 | c.              | SiO <sub>2</sub>                                               |
|         | $NH_3$                   |                                 |                 |                                                                |
|         | b.                       |                                 | d.              | CH <sub>3</sub> F                                              |
|         | $H_2CO$                  |                                 |                 |                                                                |
| <br>52. | A 25.0 g samp            | ble of water at 100°C has an er | nergy ch        | nange of -1670 J. What is the new temperature of the           |
|         | water?                   |                                 |                 | 04.02                                                          |
|         | a. 116°C                 |                                 | с.<br>d         | 84.0°C                                                         |
|         | 0. 104.18°C              | 2AI > 2AICI.                    | u.              | 38.5°C                                                         |
| <br>53. | 500012 -                 |                                 | T 30            | d                                                              |
|         | A mass of 5.4            | grams of aluminum (Al) reac     | ts with a       | an excess of copper (II) chloride ( $CuCl_2$ ) in solution, as |
|         | shown above.             | What mass of solid copper (     | Cu) is pi       | roduced?                                                       |
|         | a. 8.5 grams             |                                 | с.<br>d         | 19 grams                                                       |
| ~ ^     | D. 58 grains             |                                 | u.              | 28 grans                                                       |
| <br>54. | How many mo              | plecules of nitrogen gas are in | a 5.50 I        | L at 75.0 kPa and 125 °C?                                      |
|         | a. $7.51 \times 10^{-1}$ | 23                              | С.<br>Л         | $3.50 \times 10^{23}$                                          |
|         | D. 0.02 X 10             |                                 | d.              | 4.55 X 10 <sup>19</sup>                                        |
| <br>55. | Why is cobalt            | (Co) placed before nickel (Ni   | () on the       | periodic table of the elements even though it has a higher     |
|         | average atom             | c mass than nickel?             |                 |                                                                |
|         | a. Codalt wa             | as discovered first.            | с.<br>d         | Nickel has one more proton                                     |
|         | D. INICKEI IIA           | s lewel electrons.              | u.              |                                                                |
| <br>56. | The products             | created from the reactants      | below           | would be:                                                      |
|         | NaF +                    | $AgNO_3 \rightarrow ?$          |                 |                                                                |
|         | NT NT 4                  |                                 |                 |                                                                |
|         | a. $Na_3N, A_3$          | $gF, O_2$                       | с.              | Nano, Agf, $O_2$                                               |
|         | b. NaNO <sub>3</sub> ,   | AgF                             | d.              | FNO <sub>3</sub> , NaAg                                        |
| <br>57. | What is the ne           | w volume when 10.0 L of Ne      | on gas a        | at 10°C is heated to 100°C without changing the pressure.      |
|         | a. 22.0 L                |                                 | c.              | 13.2 L                                                         |
|         | b. 7.6 L                 |                                 | d.              | 100. L                                                         |
| <br>58. | Table 1                  |                                 |                 |                                                                |
|         | Substance                | Density                         |                 |                                                                |
|         | Iridium                  | 22.4 g/ml                       |                 |                                                                |
|         | Gold                     | 19.3 g/mL                       |                 |                                                                |
|         | Mercury                  | 13.5 g/mL                       |                 |                                                                |
|         | Lead                     | 11.3 g/mL                       |                 |                                                                |
|         | Aluminum                 | 2.7 g/mL                        |                 |                                                                |
|         | Water                    | 1 g/mL                          |                 |                                                                |
|         | Based on the             | e data in the table above,      | which s         | substances, excluding water, would float in                    |
|         | mercury?                 |                                 |                 |                                                                |
|         | a. Lead and              | Aluminum                        | с.              | Aluminum only                                                  |
|         | b. Lead and              | Gold                            | d.              | Gold and Iridium                                               |
| <br>59. | How many pro             | otons and electrons are in a Ca | alcium <u>i</u> | <u>on</u> ?                                                    |
|         | a. 18, 18                |                                 | c.              | 20, 18                                                         |
|         | b. 18, 20                |                                 | d.              | 20, 20                                                         |

7

60. Which equation correctly represents the alpha decay of Polonium-214



61.

According to the above figure, what happens when a substance moves from point D to point E?

- a. A gas is condensing
- b. A liquid is freezing

- c. A liquid is cooling downd. A solid is melting
- Table of Common MoleculesNameHydrogenChlorineAmmoniaMethaneMolecular<br/>FormulaH2Cl2NH3CH4

62.

What type of bond to all of these compounds have in common?

- a. hydrogen c. Covalent
- b. metallic d. ionic
- 63. Lead nitrate can be decomposed by heating. What is the percent yield of the decomposition reaction if 9.9 g  $Pb(NO_3)_2$  are heated to give 5.5 g of PbO?

 $2Pb(NO_3)_2(s) \rightarrow 2PbO(s) + 4NO_2(g) + O_2(g)$ 

a.44%c.67%b.56%d.82%

64. Which of these expressions is a correct interpretation of the balanced equation?

$$2S + 3O_2 -> 2SO_3$$

- a. 2 moles of S + 3 moles of oxygen c. 2 g of S + 3 g of  $O_2$  --> 2 g of S $O_3$  --> 2 moles of S $O_3$
- b. 2 atoms of S + 6 molecules of d. None of the above oxygen --> 2 molecules of SO<sub>3</sub>

| <br>65.        | Which expression proves the law of conserv                     | vatio   | on of mass for the following equation.                                 |
|----------------|----------------------------------------------------------------|---------|------------------------------------------------------------------------|
|                | 2K                                                             | + 2     | $2 H_2 O \rightarrow 2 KOH + H_2$                                      |
|                |                                                                |         |                                                                        |
|                | a. $164.2$ g of reactants = $82.1$ g of                        | c.      | 114.2 g of reactants = $114.2$ g of                                    |
|                | products                                                       |         | products                                                               |
|                | b. $57.1$ g of reactants = $57.1$ g of                         | d.      | 57.1  g ot reactants = 58.1  g ot                                      |
|                | products                                                       |         | reactants                                                              |
| <br>66.        | $H_2O_2$ , hydrogen peroxide, naturally breaks down            | n int   | to $H_2O$ over time. MnO <sub>2</sub> , manganese dioxide, can be used |
|                | to lower the energy of activation needed for this              | s rea   | action to take place and, thus, increase the rate of reaction.         |
|                | What type of substance is MnO2?                                |         | a mua durat                                                            |
|                | a. an inhibitor                                                | c.      | a product                                                              |
| $\overline{a}$ | $\mathbf{W}$                                                   | u.      | a reactain                                                             |
| <br>67.        | • Which of the following compounds is an acid?                 | 0       | H 50                                                                   |
|                | a. $\Pi_2 O$                                                   | с.<br>а |                                                                        |
| 60             |                                                                | u.      | LIN                                                                    |
| <br>68.        | What is the correct name for the following $N_2O$              | 4?      |                                                                        |
|                | a. nitrogen (IV) oxide                                         | С.      | nitrogen tetraoxide                                                    |
|                | b. dinitrogen oxide                                            | a.      | dinitrogen tetroxide                                                   |
| <br>69.        | How do the isotopes hydrogen-1 and hydro                       | gen     | -2 differ?                                                             |
|                | a. Hydrogen-1 has no protons; Hydrogen-2                       | c.      | Hydrogen-1 has one protons; Hydrogen-2                                 |
|                | has one.                                                       |         | has one protone and one neutron.                                       |
|                | b. Hydrogen-1 has one protons; Hydrogen-2                      | d.      | Hydrogen-1 has one neutron;                                            |
|                | has two.                                                       |         | Hydrogen-2 has two protons                                             |
| <br>70.        | $H_{4}O_{10} + H_{2}O - H_{3}PO_{4}$                           |         |                                                                        |
|                | Choose the correct type of reaction.                           |         |                                                                        |
|                | a. decomposition                                               | c.      | combustion                                                             |
|                | b. combination                                                 | d.      | single replacement                                                     |
| <br>71.        | $LiOH + \H_3PO_4 \rightarrow ? + ? +$                          |         |                                                                        |
|                | The above reaction represents a special (ex                    | cep     | tional) case of a reaction, which is the:                              |
|                | a. Formation of an Acid                                        | d.      | Formation of Hydrogen Gas                                              |
|                | b. Formation of a Base                                         | e.      | Not a special (exceptional) case.                                      |
|                | c. Acid-Base Neutralization                                    |         |                                                                        |
| 72             | In a combustion reaction where hydrocarbo                      | ns (    | e a propane) or carbohydrates (e a glucose) are                        |
| <br>12.        | burned in the air, which of the following is                   | alse    | the other reactant?                                                    |
|                | a Carbon dioxide                                               | d       | Oxygen                                                                 |
|                | h Water                                                        | u.<br>е | Heat                                                                   |
|                | c. Light                                                       | 0.      | Trout                                                                  |
| 73             | A sample of a gas with a volume of $3.9 \text{ L}_{-}$ at $27$ | °C      | and 1.00 atm is cooled at a constant pressure until the                |
| <br>75.        | temperature is 11°C. Calculate the new volume                  |         | and 1.00 and is cooled at a constant pressure until the                |
|                | a 51L                                                          | с       | 4 0 L                                                                  |
|                | b. 3.7 L                                                       | d.      | 1.4 L                                                                  |
| 74             | What is the element with the lowest electrones                 | ntivi   | ty value?                                                              |
| <br>           | a. calcium                                                     | с.      | cesium                                                                 |
|                | 1                                                              | 1       | Class of the s                                                         |

b. oxygen d. fluorine

| <br>75. | Which of the following elements has the small   | est <u>ic</u>      | onic radius?                                                |
|---------|-------------------------------------------------|--------------------|-------------------------------------------------------------|
|         | a. Oxide ion                                    | c.                 | Sulfide ion                                                 |
|         | b. Lithium ion                                  | d.                 | Potassium ion                                               |
| <br>76. | Barium is a larger atom than Calcium. Which     | of th              | e following is the <i>BEST</i> explanation why this occurs? |
|         | a. Barium only has two valence electrons        | c.                 | Barium has more electrons than calcium                      |
|         | b. Barium more electrons and protons and        | d.                 | Barium has two more energy levels than                      |
|         | more attraction                                 |                    | calcium                                                     |
| <br>77. | Which element has the configuration of [Rn] 7   | 's <sup>2</sup> 5f | <sup>3</sup> 6d <sup>1</sup>                                |
|         | a. Th                                           |                    |                                                             |
|         | b. Nd                                           |                    |                                                             |
|         | c. Ac                                           |                    |                                                             |
|         | d. U                                            |                    |                                                             |
| <br>78. | Choose the correct electron configuration for I | <b>D</b> 3-        |                                                             |
|         | a. $1s^2 2s^2 2p^6 3s^2$                        | c.                 | $1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^3$                          |
|         | b. $1s^2 2s^2 2p^6 3s^2 3p^6$                   | d.                 | $1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 4s^2$                   |
| <br>79. | Who arranged the elements according to atomic   | ic ma              | ass and used the arrangement to predict the properties of   |
|         | missing elements?                               |                    |                                                             |
|         | a. Dmitri Mendeleev                             | c.                 | John Dalton                                                 |
|         | b. Antoine Lavoisier                            | d.                 | Henry Moseley                                               |
| <br>80. | What is the number of moles of solute in 250 r  | nL o               | f a 0.4 <i>M</i> solution?                                  |
|         | a. 0.16 mol                                     | c.                 | 0.1 mol                                                     |
|         | b. 1.6 mol                                      | d.                 | 0.62 mol                                                    |
| <br>81. | The noble gas configuration for Uranium i       | s:                 |                                                             |
|         | a. [Xe] $7s^2 5f^3$                             | c.                 | [Xe] $7s^2 5f^2 5d^1$                                       |
|         | b. [Rn] $7s^2 5f^3$                             | d.                 | [Rn] $7s^2 5f^3 6d^1$                                       |
|         |                                                 |                    |                                                             |
| 82.     | What is the correct formula for barium chlorate | e?                 |                                                             |
|         | a. $Ba(ClO)_2$                                  | c.                 | $Ba(ClO_3)_2$                                               |
|         | $h = Ba(C O_{1})$                               | d                  | BaCl                                                        |
|         | $b. bu(cro_2)_2$                                | u.                 |                                                             |
| <br>83. | If a balloon is squeezed, what happens to the p | ressu              | are of the gas inside the balloon?                          |
|         | a. The pressure depends on the type of gas in   | n the              | balloon.                                                    |
|         | b. It decreases.                                |                    |                                                             |
|         | c. It stays the same.                           |                    |                                                             |
|         | d. It increases.                                |                    |                                                             |
| <br>84. | What is the volume of 63.8 g of Carbon Dioxid   | de at              | a pressure of 75.0 kPa and a temperature of 345 K?          |
|         | a. 78.4 L                                       | с.                 | 55.4 L                                                      |
|         | b. 8.23 L                                       | d.                 | 22.4 L                                                      |
| <br>85. | A 25.0 g sample of water at 100°C has an ener   | gy cl              | hange of -1670 J. What is the new temperature of the        |
|         | water?                                          |                    | 10.1.10.2                                                   |
|         | a. 116°C                                        | с.                 | 104.18°C                                                    |
|         | b. 84.0°C                                       | d.                 | 38.3°U                                                      |

86. The graph below represents the uniform cooling (freezing) of a substance, starting with the substance as a gas above its boiling point.



Choose the answers that describe the change in enthalpy between C and D

- a.  $\Delta H$  and Endothermic d.  $-\Delta H$  and Exothermic
- b.  $\Delta H$  and Exothermic e.  $\Delta H_{vap}$  and Exothermic
- c.  $-\Delta H$  and Endothermic

\_\_\_\_\_ 87. What is the molarity of 200 mL of solution in which 2.0 moles of sodium bromide is dissolved?

- a. 2.0*M* c. 0.40*M*
- b. 4.0*M* d. 10*M*
- 88. What is the molality of a solution containing 8.0 grams of solute in 0.50 kg of solvent? (molar mass of solute = 24 g)
  - a. 0.17*m* c. 4*m* b. 0.67*m* d. 1.67*m*
- \_ 89. How many valence electrons does an atom of any halogen group have?
  - a. 4 c. 7 b. 5 d. 8
- 90. An analysis of the equilibrium mixture in a 1-L flask gives the following results:  $[HC1] = .30 \text{ mol}, [O_2] = .20 \text{ mol}, [H_2O] = 1.2 \text{ mol}, \text{ and } [Cl_2] = .60$

### $4HCl(g) + O_2(g) < ---> 2H_2O(g) + 2Cl_2(g) + 10kJ$

Based on your answer for  $K_{eq}$  are the reactants or products favored?

- a. products c. reactants
- b. heat d. Both a and B

91. Isotopes of the same element will have different... (Choose all that apply)

- a. numbers of protons d. numbers of electrons
- b. chemical propertiesc. numbers of neutronse. masses
- c. numbers of neutrons

92.

# $NH_4CI(s) + heat \implies NH_3(g) + HCI(g)$

- What kind of change will shift the reaction above to the right to form more products?
- a. a decrease in total pressureb. an increase in the pressure of NH3c. a decrease in temperatured. an increase in the concentration of HCl

|   |             | 0                    | f four different laboratory solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s, th                  | ie                                                                                             |
|---|-------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------|
|   |             | <b>S</b> 0           | lution with the highest acidity has :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a pł                   | I of                                                                                           |
|   | 93.         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                                                |
|   |             | a.                   | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | c.                     | 3                                                                                              |
|   |             | b.                   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d.                     | 5                                                                                              |
|   | 94.         | Ch                   | oose the correct molecular shape for am                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mon                    | ia, NH3.                                                                                       |
|   |             | a.                   | trigonal planar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c.                     | trigonal pyramidal                                                                             |
|   |             | b.                   | linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d.                     | bent                                                                                           |
|   | 95.         | Wh<br>imr            | en a reaction is at equilibrium and more rea<br>nediate result?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ictan                  | t is added, which of the following changes is the                                              |
|   |             | a.                   | The forward reaction rate increases.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | c.                     | The forward reaction rate remains the same.                                                    |
|   |             | b.                   | The reverse reaction rate decreases.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d.                     | The reverse reaction rate remains the same.                                                    |
|   |             |                      | $2CO + O_2 \longrightarrow 2CO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                                                                                                |
|   | 96          | If<br>se<br>pr<br>re | the above reaction takes place insid<br>aled reaction chamber, then which<br>ocedures will cause a decrease in th<br>action?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | le a<br>of ti<br>ne ra | hese<br>ate of                                                                                 |
|   | <i>J</i> 0. | a.<br>b.             | removing the CO <sub>2</sub> as it is formed raising the temperature of the reaction chamber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | c.<br>d.               | adding more CO to the reaction chamber<br>increasing the volume inside the reaction<br>chamber |
|   | 97.         | De                   | termine the shape of SCl <sub>2</sub> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                                                                                                |
|   |             | a.                   | bent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | c.                     | trigonal pyramidal                                                                             |
|   |             | b.                   | tetrahedral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d.                     | linear                                                                                         |
|   |             | 4                    | $HCI_{(g)} + O_{2(g)} \rightleftarrows 2H_2O_{(l)} + 2CI_{2(g)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | g) +                   | 113 kJ                                                                                         |
|   | 98.         |                      | Which action will drive the rearing the re | acti                   | on to the                                                                                      |
|   |             | a.<br>b.             | increasing the system's pressure<br>heating the equilibrium mixture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | c.<br>d.               | decreasing the oxygen concentration<br>adding water to the system                              |
|   | 99.         | Wł                   | hich of the following covalent bonds is t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | he m                   | nost polar?                                                                                    |
|   |             | a.                   | СС                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | с.                     | СН                                                                                             |
|   |             | b.                   | CBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d.                     | CCl                                                                                            |
| 1 | 00.         | In                   | which of the following reactions involving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | g gas                  | es would the forward reaction be favored by an                                                 |
|   |             | inc                  | rease in pressure?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50                     |                                                                                                |
|   |             | a.                   | $A + B \rightleftharpoons AB$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | c.                     | $AC \rightleftharpoons A + C$                                                                  |
|   |             | b.                   | $A + B \rightleftharpoons C + D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d.                     | $2A + B \rightleftharpoons C + 2D$                                                             |

| 101.                 | . Why do atoms share electrons in covalent bonds?                                                                                                                                                                                                                                                                            |                                         |                                                                                                                                                             |  |  |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                      | a. to attain a noble-gas electron configuration                                                                                                                                                                                                                                                                              | c.                                      | to become ions and attract each other                                                                                                                       |  |  |
|                      | b. to increase their atomic numbers                                                                                                                                                                                                                                                                                          | d.                                      | to become more polar                                                                                                                                        |  |  |
| 102.                 | Equal volumes of 1 molar hydroch<br>(HCl) and 1 molar sodium hydroxi<br>(NaOH) are mixed. After mixing, t<br>will be                                                                                                                                                                                                         | loric a<br>de ba<br>he sol              | ncid<br>se<br>ution                                                                                                                                         |  |  |
|                      | a. weakly basic                                                                                                                                                                                                                                                                                                              | с.                                      | nearly neutral                                                                                                                                              |  |  |
|                      | b. strongly acidic                                                                                                                                                                                                                                                                                                           | d.                                      | weakly acidic                                                                                                                                               |  |  |
|                      | Which would be <i>most</i> appropriate                                                                                                                                                                                                                                                                                       | for co                                  | llecting                                                                                                                                                    |  |  |
| 103.                 | data during a neutralization reacti                                                                                                                                                                                                                                                                                          | on?                                     |                                                                                                                                                             |  |  |
| 103.                 | data during a neutralization reacti<br>a. a statistics program                                                                                                                                                                                                                                                               | on?<br>c.                               | a pH probe                                                                                                                                                  |  |  |
| 103.                 | data during a neutralization reacti<br>a. a statistics program<br>b. a thermometer                                                                                                                                                                                                                                           | on?<br>c.<br>d.                         | a pH probe<br>a graphing program                                                                                                                            |  |  |
| 103.<br>104.         | <ul> <li>data during a neutralization reacti</li> <li>a. a statistics program</li> <li>b. a thermometer</li> <li>Which intermolecular force is present in the strongest force present.</li> </ul>                                                                                                                            | on?<br>c.<br>d.<br>compo                | a pH probe<br>a graphing program<br>und $CH_3NH_2$ between the N and H? Choose only the                                                                     |  |  |
| 103.<br>104.         | <ul> <li>data during a neutralization reacti</li> <li>a. a statistics program</li> <li>b. a thermometer</li> <li>Which intermolecular force is present in the strongest force present.</li> <li>a. dipole-dipole</li> </ul>                                                                                                  | on?<br>c.<br>d.<br>compo<br>c.          | a pH probe<br>a graphing program<br>und CH <sub>3</sub> NH <sub>2</sub> between the N and H? Choose only the<br>dispersion                                  |  |  |
| 103.<br>104.         | <ul> <li>data during a neutralization reacti</li> <li>a. a statistics program</li> <li>b. a thermometer</li> <li>Which intermolecular force is present in the strongest force present.</li> <li>a. dipole-dipole</li> <li>b. electrostatic</li> </ul>                                                                        | on?<br>c.<br>d.<br>compo<br>c.<br>d.    | a pH probe<br>a graphing program<br>und CH <sub>3</sub> NH <sub>2</sub> between the N and H? Choose only the<br>dispersion<br>hydrogen bonding              |  |  |
| 103.<br>104.<br>105. | <ul> <li>data during a neutralization reacti</li> <li>a. a statistics program</li> <li>b. a thermometer</li> <li>Which intermolecular force is present in the strongest force present.</li> <li>a. dipole-dipole</li> <li>b. electrostatic</li> <li>Which structural formula represents a normalization reaction.</li> </ul> | c.<br>d.<br>compo<br>c.<br>d.<br>npolar | a pH probe<br>a graphing program<br>und CH <sub>3</sub> NH <sub>2</sub> between the N and H? Choose only the<br>dispersion<br>hydrogen bonding<br>molecule? |  |  |

| a. | н—н            | с. | H-N-H<br> <br>H |
|----|----------------|----|-----------------|
| b. | н— 0<br> <br>Н | d. | H — CI          |

## Spring Practice test Answer Section

## MULTIPLE CHOICE

| 1.                                                             | ANS: D<br>Stt. 4h                                                            |                                                                           |                    |                                                      |
|----------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------|------------------------------------------------------|
| 2.                                                             | PTS: 1<br>ANS: A<br>ST 2A, 2B                                                | STA: 4h                                                                   |                    |                                                      |
| 3.<br>4.                                                       | PTS: 1<br>ANS: A<br>ANS: B<br>ST. 1.E                                        | PTS: 1                                                                    |                    |                                                      |
| 5.                                                             | PTS: 1<br>ANS: C<br>St. 4c,g                                                 |                                                                           |                    |                                                      |
| 6.<br>7.                                                       | PTS: 1<br>ANS: B<br>OBJ: 22.1.2<br>ANS: A<br>St. 4c                          | STA: 4c,g<br>PTS: 1<br>STA: Ch.10.d                                       | DIF: L1            | REF: p. 698                                          |
| 8.                                                             | PTS: 1<br>ANS: D<br>ST. 1<br>ST. 11.C                                        |                                                                           |                    |                                                      |
| 9.<br>10.                                                      | PTS: 1<br>ANS: B<br>ANS: B<br>St. 4c                                         | PTS: 1                                                                    | STA: 3e            |                                                      |
| <ol> <li>11.</li> <li>12.</li> <li>13.</li> <li>14.</li> </ol> | PTS: 1<br>ANS: A<br>ANS: B<br>ANS: B<br>OBJ: 23.1.1<br>ANS: B<br>Standard 1c | STA: 4c         PTS: 1         PTS: 1         PTS: 1         STA: Ch.10.e | STA: 3d<br>DIF: L1 | KEY: Mass to Representative Particles<br>REF: p. 726 |

**PTS**: 1

| 15.        | ANS:<br>St. 1.E<br>ST. 1.I | A<br>H                  |                  |                       |                  |             |      |                              |
|------------|----------------------------|-------------------------|------------------|-----------------------|------------------|-------------|------|------------------------------|
| 16.        | PTS:<br>ANS:<br>KEY:       | 1<br>B<br>Moles to Repr | PTS:<br>esentati | 1<br>ive Particles wi | STA:<br>thin for | 3d<br>rmula |      |                              |
| 17.<br>18. | ANS:<br>ANS:<br>St. 1c     | E<br>D                  | PTS:             | 1                     |                  |             |      |                              |
| 19.        | PTS:<br>ANS:<br>ST 1B      | 1<br>D                  | STA:             | 1c                    |                  |             |      |                              |
| 20         | PTS:                       | 1<br>B                  | ρτς.             | 1                     |                  |             |      |                              |
| 20.<br>21  | ANS.                       | C                       | PTS.             | 1                     | DIF∙             | L1          | REF  | n 694                        |
|            | OBJ:                       | 22.1.2                  | STA:             | Ch.10.d               | 2                |             |      | F. 07.                       |
| 22.        | ANS:<br>ST 4E              | D                       |                  |                       |                  |             |      |                              |
|            | PTS:                       | 1                       |                  |                       |                  |             |      |                              |
| 23.        | ANS:                       | D                       | PTS:             | 1                     | STA:             | 4d          |      |                              |
| 24.        | ANS:<br>St. 7d             | A                       |                  |                       |                  |             |      |                              |
|            | PTS:                       | 1                       |                  |                       |                  |             |      |                              |
| 25.        | ANS:                       | D                       | PTS:             | 1                     | DIF:             | L1          | REF: | p. 694                       |
|            | OBJ:                       | 22.1.1                  | STA:             | Ch.1.g   Ch.10        | .b               |             |      | -                            |
| 26.        | ANS:                       | С                       | PTS:             | 1                     |                  |             |      |                              |
| 27.        | ANS:<br>ST. 1.             | C<br>A                  |                  |                       |                  |             |      |                              |
|            | PTS:                       | 1                       |                  |                       |                  |             |      |                              |
| 28.        | ANS:                       | С                       | PTS:             | 1                     |                  |             |      |                              |
| 29.        | ANS:                       | В                       | PTS:             | 1                     |                  |             |      |                              |
| 30.        | ANS:                       | B                       | PTS:             | 1                     | DIF:             | L1          | REF: | p. 695                       |
| 21         | OBJ:                       | 22.1.2                  | STA:             | Ch.10.d               |                  |             |      |                              |
| 51.        | ANS:<br>St. 7c             | C                       |                  |                       |                  |             |      |                              |
|            | PTS:                       | 1                       |                  |                       |                  |             |      |                              |
| 32.        | ANS:                       | А                       | PTS:             | 1                     | STA:             | 3d          | KEY: | Molar Volume of a gas at STP |

33. ANS: B St. 1c

PTS: 1

| 34.       | ANS: B               | PTS: 1                 | DIF: L1        | REF: p. 737                            |
|-----------|----------------------|------------------------|----------------|----------------------------------------|
|           | OBJ: 23.3.1          | STA: Ch.10.e           |                |                                        |
| 35.       | ANS: D               |                        |                |                                        |
|           | ST 3                 |                        |                |                                        |
|           |                      |                        |                |                                        |
| 26        | PIS: I               | DTC 1                  | ОТА. 2.        | VEV To f De dia De dia                 |
| 36.<br>27 | ANS: B               | PIS: 1                 | SIA: 3a        | KEY: Types of Reactions; Decomposition |
| 37.       | ANS: C               | PIS: 1                 |                |                                        |
| 38.       | ANS: D               | PIS: 1                 | STA: 3d        |                                        |
| 20        | KEY: density of a ga | as at STP; motar mass; | , motar volume |                                        |
| 39.       | ANS: B               |                        |                |                                        |
|           | 51 5                 |                        |                |                                        |
|           | PTS· 1               |                        |                |                                        |
| 40.       | ANS: C               |                        |                |                                        |
|           | St. 4d, 4e, 4f, 4c   |                        |                |                                        |
|           | , , ,                |                        |                |                                        |
|           | PTS: 1               | STA: 4c,d,e,f          |                |                                        |
| 41.       | ANS: D               |                        |                |                                        |
|           | St. 7a               |                        |                |                                        |
|           |                      |                        |                |                                        |
|           | PTS: 1               | STA: 7a                |                |                                        |
| 42.       | ANS: D               |                        |                |                                        |
|           | ST.11.c              |                        |                |                                        |
|           | ρτς. 1               |                        |                |                                        |
| 13        | ANS: C               |                        |                |                                        |
| 45.       | St 2d                |                        |                |                                        |
|           | 51. 24               |                        |                |                                        |
|           | PTS: 1               |                        |                |                                        |
| 44.       | ANS: B               | PTS: 1                 |                |                                        |
| 45.       | ANS: B               | PTS: 1                 | STA: 3a        | KEY: Balancing Equations               |
| 46.       | ANS: C               |                        |                |                                        |
|           | ST 2A, 2B            |                        |                |                                        |
|           |                      |                        |                |                                        |
|           | PTS: 1               |                        |                |                                        |
| 47.       | ANS: D               | PTS: 1                 | STA: 3d        | KEY: Molar Volume of a Gas             |
| 48.       | ANS: B               | PTS: 1                 | STA: 3b        | KEY: Mass to Moles                     |
| 49.       | ANS: D               |                        |                |                                        |
|           | Standard 1c          |                        |                |                                        |
|           | DTC. 1               | СТА. 1 <sub>0</sub>    |                |                                        |
| 50        | PIS: I               | STA: IC                |                |                                        |
| 50.       | ANS: C<br>St 7b      |                        |                |                                        |
|           | SI. /U               |                        |                |                                        |
|           | PTS: 1               |                        |                |                                        |
| 51.       | ANS: C               | PTS: 1                 | DIF: L1        | REF: p. 740                            |
|           | OBJ: 23.3.2          | STA: Ch.10.e           |                | P                                      |
|           |                      |                        |                |                                        |

| 52.       | ANS: C                     | PTS:         | 1      |      |    |       |                     |
|-----------|----------------------------|--------------|--------|------|----|-------|---------------------|
| 53.       | ANS: C                     | PTS:         | 1      | STA: | 3e |       |                     |
| 54.       | ANS: A                     |              |        |      |    |       |                     |
|           | St. 4h                     |              |        |      |    |       |                     |
|           | DTC. 1                     | <b>ст</b> л. | 46     |      |    |       |                     |
| 55        | PIS: I                     | 51A:         | 411    |      |    |       |                     |
| 55.       | AINS. $D$<br>St 1 $\Delta$ |              |        |      |    |       |                     |
|           | St. 1.A                    |              |        |      |    |       |                     |
|           | PTS: 1                     |              |        |      |    |       |                     |
| 56.       | ANS: B                     | PTS:         | 1      | STA: | 3a | KEY:  | Predicting Products |
| 57.       | ANS: C                     | PTS:         | 1      |      |    |       |                     |
| 58.       | ANS: A                     |              |        |      |    |       |                     |
|           | ST. 1                      |              |        |      |    |       |                     |
|           | PTS: 1                     |              |        |      |    |       |                     |
| 59.       | ANS: C                     |              |        |      |    |       |                     |
| • • •     | ST. 1A, ST 2.A             |              |        |      |    |       |                     |
|           |                            |              |        |      |    |       |                     |
|           | PTS: 1                     |              |        |      |    |       |                     |
| 60.       | ANS: D                     | PTS:         | 1      |      |    |       |                     |
| 61.       | ANS: B                     | PTS:         | 1      |      |    |       |                     |
| 62.       | ANS: C                     |              |        |      |    |       |                     |
|           | ST 2B                      |              |        |      |    |       |                     |
|           | PTS: 1                     |              |        |      |    |       |                     |
| 63.       | ANS: D                     | PTS:         | 1      | DIF: | L2 | REF:  | p. 375              |
|           | OBJ: 12.3.2                | STA:         | Ch.3.f |      |    |       | •                   |
| 64.       | ANS: A                     | PTS:         | 1      |      |    |       |                     |
| 65.       | ANS: C                     |              |        |      |    |       |                     |
|           | 3                          |              |        |      |    |       |                     |
|           | $PTS \cdot 1$              |              |        |      |    |       |                     |
| 66        | ANS: B                     | PTS.         | 1      | STA  | 8c |       |                     |
| 67        | ANS: C                     | PTS.         | 1      | DIF. | 2  | STA   | 2a                  |
| 07.       | TOP: Acid Identific        | ation        | 1      | DII. | 2  | 5111. | 24                  |
| 68.       | ANS: D                     | PTS:         | 1      | DIF: | 2  | STA:  | 2a                  |
|           | TOP: Molecular Na          | ming         |        |      |    |       |                     |
| 69.       | ANS: C                     | U            |        |      |    |       |                     |
|           | ST. 1                      |              |        |      |    |       |                     |
|           | ST. 11.C                   |              |        |      |    |       |                     |
|           | PTS· 1                     |              |        |      |    |       |                     |
| 70        | ANS B                      | <b>PTS</b> · | 1      |      |    |       |                     |
| 70.<br>71 | ANS: C                     | PTS.         | 1      |      |    |       |                     |
| 72        | ANS: D                     | PTS.         | 1      |      |    |       |                     |
| · •       |                            | ~ .          | -      |      |    |       |                     |

73. ANS: B

St. 4c

|           | PTS:    | 1             | STA: | 4c          |      |     |              |                 |
|-----------|---------|---------------|------|-------------|------|-----|--------------|-----------------|
| 74.       | ANS:    | С             | PTS: | 1           | DIF: | L1  | REF:         | p. 177          |
|           | OBJ:    | 6.3.3         | STA: | Ch.1.c      |      |     |              | •               |
| 75.       | ANS:    | В             | PTS: | 1           | DIF: | L2  | REF:         | p. 175          |
|           | OBJ:    | 6.3.3         | STA: | Ch.1.c      |      |     |              | -               |
| 76.       | ANS:    | D             | PTS: | 1           |      |     |              |                 |
| 77.       | ANS:    | D             | PTS: | 1           | DIF: | L2  | REF:         | p. 133          |
|           | OBJ:    | 5.2.1         | STA: | Ch.1.i      |      |     |              |                 |
| 78.       | ANS:    | В             | PTS: | 1           |      |     |              |                 |
| 79.       | ANS:    | А             | PTS: | 1           | DIF: | L1  | REF:         | p. 156          |
|           | OBJ:    | 6.1.2         | STA: | Ch.1        |      |     |              |                 |
| 80.       | ANS:    | С             | PTS: | 1           | DIF: | L2  | REF:         | p. 480   p. 482 |
|           | OBJ:    | 16.2.1        | STA: | Ch.6.d      |      |     |              |                 |
| 81.       | ANS:    | D             | PTS: | 1           | DIF: | L2  | REF:         | p. 164          |
|           | OBJ:    | 6.2.2         | STA: | Ch.1.g      |      |     |              |                 |
| 82.       | ANS:    | С             | PTS: | 1           | DIF: | L3  | REF:         | p. 257   p. 264 |
|           | OBJ:    | 9.2.2   9.5.2 | STA: | Ch.5        |      |     |              |                 |
| 83.       | ANS:    | D             | PTS: | 1           | DIF: | L1  | REF:         | p. 416          |
|           | OBJ:    | 14.1.2        | STA: | Ch.4.c      |      |     |              |                 |
| 84.       | ANS:    | С             |      |             |      |     |              |                 |
|           | Stt. 4h | l             |      |             |      |     |              |                 |
|           | ρτς.    | 1             | STA  | 4h          |      |     |              |                 |
| 85        | ANS.    | B             | PTS. | 1           |      |     |              |                 |
| 86<br>86  | ANS.    | D             | PTS. | 1           |      |     |              |                 |
| 80.<br>87 | ANS.    | D             | DTS. | 1           | DIE  | 1.2 | DEE          | n 183   n 181   |
| 07.       | ORI     | 1622          | STA  | r<br>Ch 6 d | DIF. | L/4 | NEF.         | p. 403   p. 404 |
| 88        | ΔNS·    | R             | PTS. | 1           | DIE  | 12  | <b>R</b> FE· | n 491           |
| 00.       | ORI.    | 1641          | STA. | r<br>Ch 6 d |      |     | KLI',        | P. 471          |
|           | ODJ.    | 10.7.1        | DIT. | C11.0.u     |      |     |              |                 |

## MULTIPLE RESPONSE

| 89.        | ANS:<br>2a                 | С              |      |   |
|------------|----------------------------|----------------|------|---|
| 90.        | PTS:<br>ANS:<br>9b         | 1<br>A         |      |   |
| 91.<br>92. | PTS:<br>ANS:<br>ANS:<br>9a | 1<br>C, E<br>A | PTS: | 1 |
|            | PTS:                       | 1              |      |   |

| 93.  | ANS:<br>5d         | C      |
|------|--------------------|--------|
| 94.  | PTS:<br>ANS:<br>2f | 1<br>C |
| 95.  | PTS:<br>ANS:<br>9a | 1<br>A |
| 96.  | PTS:<br>ANS:<br>8a | 1<br>D |
| 97.  | PTS:<br>ANS:<br>2f | 1<br>A |
| 98.  | PTS:<br>ANS:<br>9b | 1<br>A |
| 99.  | PTS:<br>ANS:<br>2f | 1<br>D |
| 100. | PTS:<br>ANS:<br>9a | 1<br>A |
| 101. | PTS:<br>ANS:<br>2a | 1<br>A |
| 102. | PTS:<br>ANS:<br>5a | 1<br>C |
| 103. | PTS:<br>ANS:<br>5a | 1<br>C |
| 104. | PTS:<br>ANS:<br>2h | 1<br>D |
|      | PTS:               | 1      |

105. ANS: A 2f

PTS: 1