\qquad
\qquad
\qquad

Thermodynamics Practice Test

Multiple Choice

Identify the choice that best completes the statement or answers the question.
*You will have 5 questions over last semester material.

* You will also have questions from ch 13-14 called "Blast from the Past".
* You will not be given the formula's only the constants.

Important formulas and constants

$\begin{array}{ll}Q=m \Delta H_{\text {vap }} & m-\Delta H_{\text {vap }} \\ Q=m \Delta H_{\text {fus }} & m-\Delta H_{\text {fus }} \\ Q=m C \Delta T\end{array}$

For Water

$\Delta H_{\text {fus }}=6.01 \mathrm{~kJ} / \mathrm{mol}$ or $334 \mathrm{~J} / \mathrm{g}$
$\Delta H_{\text {vap }}=40.7 \mathrm{~kJ} / \mathrm{mol}$ or $2260 \mathrm{~J} / \mathrm{g}$
$c=4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
\qquad 1. The random molecular motion of a substance is greatest when the substance is
a. a gas.
c. frozen.
b. condensed.
d. a liquid.
\qquad 2. The direct change of a substance from a solid to a gas is called...
a. sublimation
c. evaporation
b. condensation
d. deposition
\qquad 3. A chunk of ice whose temperature is $-\mathbf{2 0}{ }^{\circ} \mathbf{C}$ is added to an insulated cup filled with water at $\mathbf{0}^{\circ} \mathbf{C}$. What happens in the cup?
a. some of the water freezes, so the chunk
c. the ice melts until it reaches the of ice gets larger
temperature of the water
b. the water cools until it reaches the temperature of the ice.
\qquad 4. Particles in a gas are best described as \qquad .
a. hard spheres influenced by repulsive forces from other spheres
b. small, hard spheres with insignificant volumes
c. slow-moving, kinetic, hard spheres
d. spheres that are in fixed positions when trapped in a container
\qquad 5. If you were to touch the flask in which an endothermic reaction were occurring, \qquad .
a. the flask would probably feel cooler than before the reaction started
c. the flask would probably feel warmer than before the reaction started
d. none of the above
b. the flask would feel the same as before the reaction started
\qquad 6. When the external pressure is 505 kPa , what is the vapor pressure of water at its boiling point?
a. $\quad 505 \mathrm{kPa}$
b. $\quad 1010 \mathrm{kPa}$
c. $\quad 101.3 \mathrm{kPa}$
d. 0 kPa
7. How much heat must you add to boil 101 g of water at $100^{\circ} \mathrm{C}$?
a. $\quad 3.34 \times 10^{4}$
b. $\quad 2.26 \times 10^{7} \mathrm{~J}$
c. $\quad 4.18 \times 10^{4} \mathrm{~J}$
d. $\quad 2.28 \times 10^{5} \mathrm{~J}$
8. When 45 g of an alloy, at $25^{\circ} \mathrm{C}$, are dropped into 100.0 g of water, the alloy absorbs 956 J of heat. If the final temperature of the alloy is $37^{\circ} \mathrm{C}$, what is its specific heat?
a. $\quad 9.88 \frac{\mathrm{cal}}{\mathrm{g}^{\circ} \mathrm{C}}$
b. $\quad 1.77 \frac{\mathrm{cal}}{\mathrm{g}^{\circ} \mathrm{C}}$
c. $\quad 0.423 \frac{\mathrm{cal}}{\mathrm{g}^{\circ} \mathrm{C}}$
d. $\quad 48.8 \frac{\mathrm{cal}}{\mathrm{g}^{\circ} \mathrm{C}}$
\qquad 9. The graph below represents the uniform cooling (freezing) of a substance, starting with the substance as a gas above its boiling point.

During which interval is the substance completely in the liquid phase?
a. AB
d. DE
b. BC
e. EF
c. CD
10. During a phase change, the temperature of a substance \qquad .
a. may increase or decrease
c. decreases
b. remains constant
d. increases
11. Which of the following statements is NOT true, according to the kinetic theory?
a. The particles of a gas collide with each other and with other objects.
b. Only particles of matter in the gaseous state are in constant motion.
c. There is no attraction between particles of a gas.
d. All of the statements are true.
12. The graph below represents the uniform cooling (freezing) of a substance, starting with the substance as a gas above its boiling point.

Choose the correct formula to find the amount of heat change from D to E.
a. $\quad Q=m\left(-\Delta H_{f u s}\right)$
b. $\quad Q=m \Delta H_{\text {vap }}$
c. $Q=m \Delta H_{\text {fus }}$
d. $\quad Q=m\left(-\Delta H_{\text {vap }}\right)$
e. $\quad Q=m C \Delta T$
13. A piece of metal is heated, then submerged in cool water. Which statement below describes what happens?
a. The temperature of the water will increase.
b. The temperature of the water will decrease.
c. The temperature of the water will increase and the temperature of the metal will decrease.
d. The temperature of the metal will increase.

According to the above figure, what is happening as a substance goes from point A to point B ?
a. A gas is getting colder
c. A solid is getting warmer
b. Ice is melting
d. A gas is condensing
15. What happens to the rate of evaporation of a liquid as the liquid is cooled?
a. It decreases.
c. The change cannot be determined.
b. It does not change.
d. It increases.
16. Why is boiling a cooling process?
a. The particles with more potential energy leave the liquid first, leaving the remaining particles with less potential energy
b. The particles with less potential energy leave the liquid first, leaving the remaining particles with more potential energy
c. The particles with more kinetic energy leave the liquid first, leaving the remaining particles with less kinetic energy
d. The particles with less kinetic energy leave the liquid first, leaving the remaining particles with more kinetic energy
17. How much heat needs to be absorbed by 100.0 g of water at $5.0^{\circ} \mathrm{C}$ to raise its temperature to $75.0^{\circ} \mathrm{C}$?
a. $\quad 2.93 \times 10^{4} \mathrm{~J}$
b. $\quad 1.57 \times 10^{5} \mathrm{~J}$
c. 175 J
d. 4.18 J
18. What must happen for liquid water to freeze?
a. The water must absorb kinetic energy from the surroundings.
c. The water molecules must begin to move faster
b. The water molecules must begin to move in random patterns.
d. The water must release energy to the surroundings.
19. The potential energy diagram of a chemical reaction is shown below.

Which letter represents the total amount of energy released in this exothermic reaction?
a. A
c. C
b. B
d. D

Phase Diagram of Carbon Dioxide
20.

What would happen to a sample of Carbon Dioxide at a constant pressure of 0.9 atm if it were heated from $-100^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$?
a. It would melt
d. It would sublime
b. It would freeze
e. It would condense
c. It would boil
21. When a substance condenses or freezes energy is \qquad and when a substance evaporates or melts energy is
a. absorbed, released
b. released, absorbed
22. Freezing water is a(an)
a. endothermic process
c. ectothermic process
b. polythermic process
d. exothermic process
23. How much heat in kJ is absorbed when 50.0 g of ice at $0^{\circ} \mathrm{C}$ melts?
a. 0 J
b. $\quad 226 \mathrm{~kJ}$
c. $\quad 16.7 \mathrm{~kJ}$
d. 20.9 kJ
24. A piece of candy has 5 Calories (or 5000 calories). If it could be burned, leaving nothing but carbon dioxide and water, how much heat would it give off?
a. Not enough information is given.
c. 5 kilocalories
b. 5000 joules
d. 500 calories
25. Water could be made to boil at $95^{\circ} \mathrm{C}$ instead of $100^{\circ} \mathrm{C}$ by \qquad .
a. decreasing the air pressure above the
c. increasing the air pressure on the water water
b. decreasing the vapor pressure of the water
26. Heat changes can occur when \qquad .
a. a substance vaporizes
d. a substance solidifies
b. a substance melts
e. all of the above
c. a substance dissolves
27. The following equation shows the reaction that occurs when nitroglycerine explodes.

$$
4 \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{9} \mathrm{~N}_{3}-->12 \mathrm{CO}_{2}+6 \mathrm{~N}_{2}+\mathrm{O}_{2}+10 \mathrm{H}_{2} \mathrm{O}+1725 \mathrm{~kJ}
$$

This reaction is \qquad .
a. endothermic
c. exothermic
b. a combination reaction
d. a combustion reaction
28. The graph below represents the uniform cooling (freezing) of a substance, starting with the substance as a gas above its boiling point.

Choose the correct formula to find the amount of heat change from E to F.
a. $Q=m \Delta H_{\text {fus }}$
b. $\quad Q=m C \Delta T$
c. $\quad Q=m\left(-\Delta H_{\text {vap }}\right)$
d. $\quad Q=m\left(-\Delta H_{f u s}\right)$
e. $\quad Q=m \Delta H_{\text {vap }}$
29. The first particles to vaporize from a liquid that is boiling are \qquad —.
a. those with the highest kinetic energy
c. those farthest from the surface of the liquid
b. those with the lowest kinetic energy
30. Standard conditions when working with gases are defined as \qquad .
a. $\quad 0^{\circ} \mathrm{C}$ and 1 kPa
b. $\quad 0 \mathrm{~K}$ and 101.3 kPa
c. $\quad 0^{\circ} \mathrm{C}$ and 101.3 kPa
d. 0 K and 1 kPa
31. Which of the following usually makes a substance dissolve faster in a solvent?
a. agitating the solution
b. increasing the particle size of the solute
c. lowering the temperature
d. decreasing the number of particles
32. What is the molarity of a solution that contains 6 moles of solute in 2 liters of solution?
a. $6 M$
b. 12 M
c. $\quad 7 \mathrm{M}$
d. $3 M$
33. What is the molarity of a solution containing 7.0 moles of solute in 569 mL of solution?
a. 81 M
b. 0.081 M
c. 12 M
d. 4.0 M
34. What is the molarity of a solution containing 56 grams of solute in 959 mL of solution? (molar mass of solute $=26 \mathrm{~g} / \mathrm{mol}$)
a. 1.5 M
b. 2.2 M
c. 2.1 M
d. 0.0022 M
35. What mass of sucrose, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$, is needed to make 500.0 mL of a 0.200 M solution?
a. $\quad 34.2 \mathrm{~g}$
b. $\quad 100 \mathrm{~g}$
c. $\quad 17.1 \mathrm{~g}$
d. $\quad 68.4 \mathrm{~g}$
36. How many mL of a 2.0 M NaBr solution are needed to make 200.0 mL of 0.50 M NaBr ?
a. 25 mL
b. 50 mL
c. $\quad 100 \mathrm{~mL}$
d. $\quad 150 \mathrm{~mL}$
37. The volume of 6.00 M HCl needed to make 319 mL of 6.80 M HCl is \qquad .
a. $\quad 0.128 \mathrm{~mL}$
b. $\quad 7.8 \mathrm{~mL}$
c. $\quad 281 \mathrm{~mL}$
d. $\quad 362 \mathrm{~mL}$
38. To 225 mL of a 0.80 M solution of KI, a student adds enough water to make 1.0 L of a more dilute KI solution. What is the molarity of the new solution?
a. 180 M
b. 2.8 M
c. 0.35 M
d. 0.18 M
39. The volume of 400 mL of chlorine gas at 400 mm Hg is decreased to 200 mL at constant temperature. What is the new gas pressure?
a. $\quad 400 \mathrm{~mm} \mathrm{Hg}$
b. $\quad 300 \mathrm{~mm} \mathrm{Hg}$
c. 800 mm Hg
d. 650 mm Hg

SOLUBILITY OF SUBSTANCES IN WATER @ 20		
C		
Substance	Formula/State	Solubility $(9 / 100 \mathrm{~g} \mathbf{~ H 2 O})$
Magnesium chloride	$\mathrm{MgCl}_{2} /$ solid	54.6
Ammonia	$\mathrm{NH}_{3} /$ gas	34.0
Ethanol	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} /$ liquid	infinite
Benzoic Acid	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH} /$ solid	0.29

40.

Which of the substances in the table can act as either the solute or the solvent when mixed with 100 grams of water at $20^{\circ} \mathrm{C}$?
a. NH_{3}
b. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$
c. MgCl_{2}
d. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
41. Which of these is an example of an exothermic chemical process?
a. evaporation of water
c. photosynthesis of glucose
b. melting ice
d. combustion of gasoline
42. How much energy is released when 752 g of water at its freezing point freezes?
a. $\quad 4.18 \mathrm{~kJ}$
b. $\quad 3.14 \mathrm{~kJ}$
c. 251 kJ
d. 752 kJ

SOLUBILITY CURVES

43.

Based on the above graph, which of the following substances show an inverse relationship between temperature and solubility?
a. KCl
b. SO_{2}
c. $\mathrm{NH}_{4} \mathrm{Cl}$
d. KNO_{3}
\qquad

44.

At what temperature will 1600 g of potassium nitrate dissolve in 1.0 L of water?
a. $75^{\circ} \mathrm{C}$
b. $100^{\circ} \mathrm{C}$
c. $\quad 0^{\circ} \mathrm{C}$
d. $50^{\circ} \mathrm{C}$
45. A 25.0 g sample of water at $100^{\circ} \mathrm{C}$ has an energy change of -1670 J . What is the new temperature of the water?
a. $116^{\circ} \mathrm{C}$
b. $84.0^{\circ} \mathrm{C}$
c. $\quad 104.18^{\circ} \mathrm{C}$
d. $58.5^{\circ} \mathrm{C}$
46. 64.0 g of a gas occupies 50.0 L at a pressure of 121 kPa and a temperature of 298 K . What is the molar mass of the gas?
a. $\quad 1.28 \mathrm{~g} / \mathrm{mol}$
b. $\quad 32.0 \mathrm{~g} / \mathrm{mol}$
c. $\quad 154 \mathrm{~g} / \mathrm{mol}$
d. $26.2 \mathrm{~g} / \mathrm{mol}$
47. A cylindrical coffee can is welded shut at $20^{\circ} \mathrm{C}$ at sea level (1.0 atm). Its height is 20 cm and its radius is 15 cm . If the bursting strength of its "tin" plate is 4.00 atm , to what temperature may it be heated before bursting?
a. $720^{\circ} \mathrm{C}$
b. $\quad 1272{ }^{\circ} \mathrm{C}$
c. $80^{\circ} \mathrm{C}$
d. $\quad 899^{\circ} \mathrm{C}$
48. A sample of a gas with a volume of 3.9 L at $27^{\circ} \mathrm{C}$ and 1.00 atm is cooled at a constant pressure until the temperature is $11^{\circ} \mathrm{C}$. Calculate the new volume.
a. $\quad 1.4 \mathrm{~L}$
b. $\quad 5.1 \mathrm{~L}$
c. $\quad 3.7 \mathrm{~L}$
d. $\quad 4.0 \mathrm{~L}$
49. How many liters of NH_{3}, at STP, will react with $5.3 \mathrm{~g} \mathrm{O}_{2}$ to form NO_{2} and water? $4 \mathrm{NH}_{3}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
a. $\quad 0.00423 \mathrm{~L}$
b. $\quad 2.12$ L
c. $\quad 3.03 \mathrm{~L}$
d. $\quad 6.49 \mathrm{~L}$
50. What type of reaction is the reaction below?
$\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Fe}+\mathrm{O}_{2}$
a. Synthesis/Combination
c. Combustion
b. Decomposition
d. Single Replacement
51. $\mathrm{P}_{4} \mathrm{O}_{10}+\mathrm{H}_{2} \mathrm{O}-->\mathrm{H}_{3} \mathrm{PO}_{4}$

How many molecules of water are needed to produce 66.8 g of phosphoric acid?
a. $\quad 2.74 \times 10^{1}$
b. $\quad 6.16 \times 10^{1}$
c. $\quad 6.16 \times 10^{23}$
d. $\quad 61.6 \times 10^{-23}$
52. Select the set of coefficients that properly balance the equation below.
$\ldots \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+\ldots \mathrm{NH}_{4} \mathrm{Cl} \rightarrow \ldots \mathrm{PbCl}_{2}{ }^{+} \ldots \mathrm{NH}_{4} \mathrm{NO}_{3}$
a. $1,2,1,2$
b. $1,2,2,1$
c. $2,1,2,1$
d. $1,2,2,2$
53. What is the correct name for $\mathrm{Sn}_{3}\left(\mathrm{PO}_{4}\right)_{2}$?
a. tritin diphosphate
c. tin(III) phosphate
b. tin(II) phosphate
d. tin(IV) phosphate
54. What is the formula for phosphoric acid?
a. $\mathrm{H}_{2} \mathrm{PO}_{3}$
b. $\mathrm{H}_{3} \mathrm{PO}_{4}$
c. HPO_{2}
d. HPO_{4}
55. What is the correct formula for Carbonic Acid?
a. HCO_{3}
b. $\quad \mathrm{H}_{2} \mathrm{CO}_{3}$
c. $\quad \mathrm{HC}_{2} \mathrm{O}_{4}$
d. $\quad \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
56. The correct name for HBr is:
a. hydrobromic acid
c. hydrogen monobromide
b. hydrogen bromide
d. monohydrobromic acid
57. What is the correct formula for barium chlorate?
a. $\mathrm{Ba}(\mathrm{ClO})_{2}$
b. $\mathrm{Ba}\left(\mathrm{ClO}_{2}\right)_{2}$
c. $\mathrm{Ba}\left(\mathrm{ClO}_{3}\right)_{2}$
d. BaCl_{2}
58. Sketch a phase change diagram for water starting at $120^{\circ} \mathrm{C}$ \& increasing to $-60^{\circ} \mathrm{C}$.

Consider the change in temerpature for your graph. Choose the best desription.
a. $\Delta \mathrm{T}$ and Endothermic
d. $-\Delta \mathrm{T}$ and Exothermic
b. $\Delta \mathrm{T}$ and Exothermic
e. $\Delta \mathrm{T}$ Niether Exothermic or
Endothermic
c. $-\Delta T$ and Endothermic

Multiple Response

Identify one or more choices that best complete the statement or answer the question.
59. Choose which example/s below are exothermic. Choose all the apply.
a. burning hydrogen gas
d. burning wood
b. condensing steam
e. boiling water
c. melting ice

Short Answer

60. It takes 770 joules of energy to raise the temperature of 50.0 g of mercury by $110^{\circ} \mathrm{C}$. What is the specific heat of mercury?
61. How much heat is required to raise the temperature of $5.5 \times 10^{2} \mathrm{~g}$ of aluminum by $10^{\circ} \mathrm{C}$? (specific heat of aluminum $=0.21 \frac{\mathrm{cal}}{\mathrm{g}^{\circ} \mathrm{C}}$)
62. A $55.0-\mathrm{g}$ piece of copper wire is heated, and the temperature of the wire changes from $19.0^{\circ} \mathrm{C}$ to $86.0^{\circ} \mathrm{C}$. The amount of heat absorbed is 343 cal. What is the specific heat of copper?
63. What is a pressure of 0.520 atm equal to in mm of Hg ?

True/False

Indicate whether the statement is true or false.
64. The melting point and the freezing point of a water occur at the same temperature.

Thermodynamics Practice Test

Answer Section

MULTIPLE CHOICE

1. ANS: A

St. 4b, 7a

PTS: 1
2. ANS: A
3. ANS: A
4. ANS: B

OBJ: 13.1.1
5. ANS: A
6. ANS: A

OBJ: 13.2.4
7. ANS: D
8. ANS: B

OBJ: 17.1.3
9. ANS: C
10. ANS: B

OBJ: 17.3.1
11. ANS: B

OBJ: 13.1.1
12. ANS: A
13. ANS: C

OBJ: 17.1.1
14. ANS: A
15. ANS: A

OBJ: 13.2.2
16. ANS: C
17. ANS: A
18. ANS: D

St. 7c

PTS: 1
19. ANS: C
20. ANS: D
21. ANS: B
22. ANS: D

OBJ: 17.1.2
23. ANS: C
24. ANS: C

OBJ: 17.1.2
25. ANS: A
26. ANS: E
27. ANS: C

STA: 4b, 7a
PTS: 1
PTS: 1
PTS: 1
STA: Ch.4.b
PTS: 1
PTS: 1
STA: Ch.4.d
PTS: 1
PTS: 1
STA: Ch.7.d
PTS: 1
PTS: 1
STA: Ch.7.d
PTS: 1
STA: Ch.4.b
PTS: 1
PTS: 1
STA: Ch.7.a
PTS: 1
PTS: 1
STA: Ch.7.a
PTS: 1
PTS: 1

PTS: 1
PTS: 1
PTS: 1
PTS: 1
STA: Ch.7.b
PTS: 1
PTS: 1
STA: Ch.7.d
PTS: 1
PTS: 1
PTS: 1

DIF: L2
REF: p. 385

DIF: L2
REF: p. 394

DIF: L2
REF: p. 509

DIF: L1
REF: p. 520
DIF: L2
REF: p. 385

DIF: L1
REF: p. 506

DIF: L2
REF: p. 391

DIF: L1
REF: p. 506

DIF: L2
REF: p. 507
28. ANS: B
29. ANS: A
30. ANS: C

OBJ: 13.1.2
31. ANS: A

OBJ: 16.1.1
32. ANS: D

OBJ: 16.2.1
33. ANS: C

OBJ: 16.2.1
34. ANS: B

OBJ: 16.2.1
35. ANS: A

OBJ: 16.2.1
36. ANS: B

OBJ: 16.2.2
37. ANS: D

OBJ: 16.2.2
38. ANS: D

OBJ: 16.2.2
39. ANS: C

St. 4c
PTS: 1
40. ANS: D

St. 6a
PTS: 1
41. ANS: D

St. 7b
PTS: 1
42. ANS: C

St. 7c
PTS: 1
43. ANS: B

St.6c
PTS: 1
44. ANS: A

PTS: 1
45. ANS: B
46. ANS: D
47. ANS: D

St. 6c

PTS: 1
PTS: 1
PTS: 1 DIF: L1
STA: Ch.4.d
PTS: 1
STA: Ch.6.b
PTS: 1
STA: Ch.6.d

DIF: L2

DIF: L1

DIF: L2
DIF: L3

DIF: L3
DIF: L2
DIF: L2
DIF: L3

REF: p. 387
REF: p. 471 | p. 472
REF: p. 481
REF: p. 480 | p. 481
REF: p. 481
REF: p. 481 | p. 482
REF: p. 483 | p. 484
REF: p. 483 | p. 484
REF: p. 483 | p. 484

STA: 4c

STA: 6a

STA: 7c

STA: 6c

PTS: 1
PTS: 1
PTS: 1
48. ANS: C

St. 4c
PTS: 1
STA: 4c
49. ANS: B

OBJ: 12.3.1
50. ANS: B

PTS: 1
DIF: L2
REF: p. 371
51. ANS. C

STA: Ch.3.d
PTS: 1 STA: 3a
PTS: 1
52. ANS: A

PTS: 1
STA: 3a
DIF: L3
REF: p. 264 | p. 277
OBJ: 9.5.3
54. ANS: B

OBJ: 9.4.2
55. ANS: B

PTS: 1
DIF: L2
PTS: 1
STA: Ch. 5
PTS: 1
56. ANS: A

ST 1A
PTS: 1
57. ANS: C

PTS: 1
DIF: L3
REF: p. 257 | p. 264
OBJ: 9.2.2| 9.5.2 STA: Ch. 5
58. ANS: D PTS: 1

MULTIPLE RESPONSE

59. ANS: A, B, D PTS: 1

SHORT ANSWER

60. ANS:

Specific heat $=\frac{770 \mathrm{~J}}{50 \mathrm{~g} \cdot 110^{\circ} \mathrm{C}}=0.14 \frac{\mathrm{~J}}{\mathrm{~g}^{\circ} \mathrm{C}}$
PTS: 1 DIF: L2 REF: p. 512
STA: Ch.7.d
61. ANS:

Heat energy $=$ mass \times specific heat \times temperature change
$=550 \mathrm{~g} \times 0.21 \frac{\mathrm{cal}}{\mathrm{g}^{\circ} \mathrm{C}} \times 10^{\circ} \mathrm{C}$
$=1.2 \times 10^{3} \mathrm{cal}$
PTS: 1
DIF: L2
REF: p. 508
OBJ: 17.1.3
STA: Ch.7.d
62. ANS:
$\Delta T=86.0^{\circ} \mathrm{C}-19.0^{\circ} \mathrm{C}=67.0^{\circ} \mathrm{C}$
specific heat $=\frac{\text { heat absorbed }}{\text { mass temperature change }}$
$=\frac{343 \mathrm{cal}}{55.0 \mathrm{~g} \cdot 67.0^{\circ} \mathrm{C}}$
$=9.31 \times 10^{-2} \frac{\mathrm{cal}}{\mathrm{g}^{\circ} \mathrm{C}}$

PTS: 1 DIF: L2 REF: p. 509|p. 510
OBJ: 17.1.3 STA: Ch.7.d
63. ANS:
$0.520 \mathrm{~atm} \times 760 \mathrm{~mm} \mathrm{Hg} / 1 \mathrm{~atm}=395 \mathrm{~mm} \mathrm{Hg}$
PTS: 1 DIF: L2 REF: p. 387 OBJ: 13.1.2
STA: Ch.4.d

TRUE/FALSE

64. ANS: T
PTS: 1
