Thermodynamics Practice Test

Multiple Choice

Identify the choice that best completes the statement or answers the question. *You will have 5 questions over last semester material. * You will also have questions from ch 13-14 called "Blast from the Past". * You will not be given the formula's only the constants.

Important formulas and constants

 $\mathbf{Q} = \mathbf{m} \Delta \mathbf{H}_{vap} \mathbf{m} - \Delta \mathbf{H}_{vap}$ $Q = m \Delta H_{fus} m - \Delta H_{fus}$ $Q = mC\Delta T$

For Water

ΔH_{fus} = 6.01 kJ/mol or 334 J/g ΔH_{vap} = 40.7 kJ/mol or 2260 J/g $c = 4.18 J/g^{\circ}C$

 1.	The random molecular motion of a substance is	s gre	atest when the substance is
	a. a gas.	c.	frozen.
	b. condensed.	d.	a liquid.
 2.	The direct change of a substance from a solid to	o a g	as is called
	a. sublimation	c.	evaporation
	b. condensation	d.	deposition
 3.	A chunk of ice whose temperature is -20 °C is happens in the cup?	adde	d to an insulated cup filled with water at 0 °C. What
	a. some of the water freezes, so the chunk	c.	the ice melts until it reaches the
	of ice gets larger		temperature of the water
	b. the water cools until it reaches the temperature of the ice.		
 4.	Particles in a gas are best described as		
	a. hard spheres influenced by repulsive force	s fro	m other spheres
	b. small, hard spheres with insignificant volu	mes	
	c. slow-moving, kinetic, hard spheres		
	d. spheres that are in fixed positions when tra	appeo	d in a container
 5.	If you were to touch the flask in which an endo		
	a. the flask would probably feel cooler than	c.	
	before the reaction started		than before the reaction started
	b. the flask would feel the same as before the reaction started	d.	none of the above
 6.	When the external pressure is 505 kPa, what is	the	vapor pressure of water at its boiling point?
	a. 505 kPa	c.	101.3 kPa
	b. 1010 kPa	d.	0 kPa

- ____ 7. How much heat must you add to **boil** 101 g of water at 100°C?
 - a. $3.34 \ge 10^4$ c. $4.18 \ge 10^4 \ J$ b. $2.26 \ge 10^7 \ J$ d. $2.28 \ge 10^5 \ J$
- 8. When 45 g of an alloy, at 25°C, are dropped into 100.0 g of water, the alloy absorbs 956 J of heat. If the final temperature of the alloy is 37°C, what is its specific heat?

a.
$$9.88 \frac{\text{cal}}{\text{g}^{\circ}\text{C}}$$
c. $0.423 \frac{\text{cal}}{\text{g}^{\circ}\text{C}}$ b. $1.77 \frac{\text{cal}}{\text{g}^{\circ}\text{C}}$ d. $48.8 \frac{\text{cal}}{\text{g}^{\circ}\text{C}}$

9. The graph below represents the uniform cooling (freezing) of a substance, starting with the substance as a gas above its boiling point.

During which interval is the substance completely in the liquid phase?

- a. AB d. DE b. BC e. EF
- b. BC c. CD
- 10. During a phase change, the temperature of a substance _____.
 - a. may increase or decrease c. decreases
 - b. remains constant d. increases
- 11. Which of the following statements is NOT true, according to the kinetic theory?
 - a. The particles of a gas collide with each other and with other objects.
 - b. Only particles of matter in the gaseous state are in constant motion.
 - c. There is no attraction between particles of a gas.
 - d. All of the statements are true.

12. The graph below represents the uniform cooling (freezing) of a substance, starting with the substance as a gas above its boiling point.

Choose the correct formula to find the amount of heat change from D to E.

- a. $Q = m(-\Delta H_{fus})$ d. $Q = m(-\Delta H_{vap})$
- b. $Q = m \Delta H_{vap}$
- e. $Q = mC\Delta T$

- c. $\mathbf{Q} = \mathbf{m} \Delta \mathbf{H}_{fus}$
- 13. A piece of metal is heated, then submerged in cool water. Which statement below describes what happens?
 - a. The temperature of the water will increase.
 - b. The temperature of the water will decrease.
 - c. The temperature of the water will increase and the temperature of the metal will decrease.
 - d. The temperature of the metal will increase.

_ 14.

According to the above figure, what is happening as a substance goes from point A to point B?

- a. A gas is getting colder
- b. Ice is melting
- 15. What happens to the rate of evaporation of a liquid as the liquid is cooled?
 - a. It decreases.
 - b. It does not change.
 - 16. Why is boiling a cooling process?
 - a. The particles with more potential energy leave the liquid first, leaving the remaining particles with less potential energy
 - b. The particles with less potential energy leave the liquid first, leaving the remaining particles with more potential energy

- c. A solid is getting warmer
- d. A gas is condensing
- c. The change cannot be determined.
- d. It increases.
- c. The particles with more kinetic energy leave the liquid first, leaving the remaining particles with less kinetic energy
- d. The particles with less kinetic energy leave the liquid first, leaving the remaining particles with more kinetic energy

Name:

- 17. How much heat needs to be absorbed by 100.0 g of water at 5.0°C to raise its temperature to 75.0°C?
 a. 2.93 x 10⁴ J
 c. 175 J
 - b. $1.57 \ge 10^5 \text{ J}$ d.
- _____ 18. What must happen for liquid water to freeze?
 - a. The water must absorb kinetic energy from the surroundings.
 - b. The water molecules must begin to move d. in random patterns.
- 4.18 J
- c. The water molecules must begin to move faster
 - The water must release energy to the surroundings.
- _ 19. The potential energy diagram of a chemical reaction is shown below.

Which letter represents the total amount of energy released in this exothermic reaction?

a. absorbed, released b. released, absorbed

Name: _____

22			
 <i>LL</i> .	Freezing water is a(an) a. endothermic process	c.	ectothermic process
	b. polythermic process	c. d.	exothermic process
23.	How much heat in kJ is absorbed when 50.		*
 23.	a. 0 J	с.	16.7 kJ
	b. 226 kJ	с. d.	20.9 kJ
24			If it could be burned, leaving nothing but carbon dioxide
 	and water, how much heat would it give off?	100).	in it could be burned, reaving housing but carbon distinct
	a. Not enough information is given.	c.	5 kilocalories
	b. 5000 joules	d.	500 calories
 25.	Water could be made to boil at 95 °C instead o	f 100	•
	a. decreasing the air pressure above the water	c.	increasing the air pressure on the water
	b. decreasing the vapor pressure of the water	d.	applying a great deal of heat
 26.	Heat changes can occur when		
	a. a substance vaporizes	d.	a substance solidifies
	b. a substance melts	e.	all of the above
	c. a substance dissolves		
 27.	The following equation shows the reaction that $4 \text{ G II O N} = 12 \text{ GO} + \text{ OV} = 0$		
	$4 C_3 H_5 O_9 N_3 \longrightarrow 12 CO_2 + 6N_2 + O_2 + C_3 H_5 O_9 N_3 \longrightarrow 12 CO_2 + 6N_2 + O_2 + C_3 H_5 O_9 N_3 \longrightarrow 12 CO_2 + 6N_2 + O_2 + C_3 H_5 O_9 N_3 \longrightarrow 12 CO_2 + 6N_2 + O_2 + C_3 H_5 O_9 N_3 \longrightarrow 12 CO_2 + 6N_2 + O_2 + C_3 H_5 O_9 N_3 \longrightarrow 12 CO_2 + 6N_2 + O_2 + C_3 H_5 O_9 N_3 \longrightarrow 12 CO_2 + 6N_2 + O_2 + C_3 H_5 O_9 N_3 \longrightarrow 12 CO_2 + 6N_2 + O_2 + C_3 H_5 O_9 N_3 \longrightarrow 12 CO_2 + 6N_2 + O_2 + C_3 H_5 O_9 N_3 \longrightarrow 12 CO_2 + 6N_2 + O_2 + C_3 H_5 O_9 N_3 \longrightarrow 12 CO_2 + 6N_2 + O_2 + C_3 H_5 O_9 N_3 \longrightarrow 12 CO_2 + 6N_2 + O_2 + C_3 H_5 O_9 N_3 \longrightarrow 12 CO_2 + 6N_2 + O_2 + C_3 H_5 O_9 N_3 \longrightarrow 12 CO_2 + 6N_2 + O_2 + C_3 H_5 O_9 N_3 \longrightarrow 12 CO_2 + 6N_2 + O_2 + C_3 H_5 O_9 \longrightarrow 12 CO_2 + 6N_2 + O_2 + C_3 H_5 O_9 \longrightarrow 12 CO_2 + 6N_2 + O_2 + C_3 H_5 O_9 \longrightarrow 12 CO_2 + 6N_2 + O_2 + C_3 H_5 O_9 \longrightarrow 12 CO_2 + 6N_2 + O_2 + O$	- 10	$H_2O + 1723 \text{ kJ}$
	a. endothermic	c.	exothermic
	b. a combination reaction	d.	
28.	The graph below represents the unif	orm	a cooling (freezing) of a substance, starting
 20.			
	with the substance as a gas above its	S DO	
	1		
	Lemperature		
	P F		
	Time		
	Choose the correct formula to find the o	amo	unt of heat change from E to F.
	a. $\mathbf{Q} = \mathbf{m} \Delta \mathbf{H}_{fus}$		$Q = m(-\Delta H_{fus})$
	b. $\mathbf{Q} = \mathbf{m}C\Delta \mathbf{T}$		$Q = m \Delta H_{vap}$
	c. $Q = m(-\Delta H_{vap})$		
29	The first particles to vaporize from a liquid tha	t is k	noiling are
 <i>_)</i> .	a. those with the highest kinetic energy	c.	those farthest from the surface of the liquid
	b. those with the lowest kinetic energy		
30.	Standard conditions when working with gases	are c	lefined as .
 -	a. 0°C and 1 kPa		0° C and 101.3 kPa

 a.
 0°C and 1 kPa
 c.
 0°C and 101.3 kPa

 b.
 0 K and 101.3 kPa
 d.
 0 K and 1 kPa

Name: _____

01	XX71 · 1 · C · 1 · · ·	11 1	1.	1. 1. 6.		
 31.	Which of the following		ubstance of	dissolve fast	ter in a solvent?	
	a. agitating the solut		-4			
	÷ .	ticle size of the solu	ne			
	c. lowering the temp					
	d. decreasing the num	•				
 32.	÷	f a solution that cor	ntains 6 m		te in 2 liters of solution?	
	a. 6 <i>M</i>		c.	7M		
	b. 12 <i>M</i>		d.	3 <i>M</i>		
 33.	What is the molarity of	f a solution contain	ing 7.0 m	oles of solut	te in 569 mL of solution?	
	a. 81 <i>M</i>		с.	12 <i>M</i>		
	b. 0.081 <i>M</i>		d.	4.0M		
34.	What is the molarity of	f a solution contain	ing 56 gra	ams of solute	e in 959 mL of solution? (molar mass of solute	e
	= 26 g/mol)		0 0		X	
	a. 1.5 <i>M</i>		с.	2.1 <i>M</i>		
	b. 2.2 <i>M</i>		d.	0.0022 <i>M</i>		
35		C H O is need			L of a 0.200 <i>M</i> solution?	
 55.		$C_{12}\Pi_{22}O_{11}$, is need				
	a. 34.2 g			17.1 g		
	b. 100 g		d.	U		
 36.	How many mL of a 2.0	M NaBr solution a	re needed	l to make 20	00.0 mL of 0.50 <i>M</i> NaBr?	
	a. 25 mL		с.	100 mL		
	b. 50 mL		d.	150 mL		
37.	The volume of 6.00M	HCl needed to mak	e 319 mL	of 6.80 <i>M</i> H	ICl is	
	a. 0.128 mL		с.			
	b. 7.8 mL		d.	362 mL		
38.		colution of KL a st			vater to make 1.0 L of a more dilute KI	
 50.	solution. What is the n			is chough w	ater to make 1.0 E of a more under Kr	
	a. 180 <i>M</i>	ionality of the new		0.35M		
	b. 2.8 <i>M</i>		с. d.	0.3 <i>3M</i> 0.18 <i>M</i>		
20		C 11				
 39.		2 of chlorine gas at	400 mm F	ng is decrea	used to 200 mL at constant temperature. What i	IS
	the new gas pressure?			900 mm 11	I	
	a. 400 mm Hg		c.	800 mm H	•	
	b. 300 mm Hg		d.	650 mm H	lg	
	SOLUBILITY OF	SUBSTANCES IN W	ATER @	20 °C		
	Substance	Formula/State	Solubility	(g/100g H2O)		
	Magnesium chloride	MgCl ₂ / solid	5	54.6		
	Ammonia	NH₃/gas	3	34.0		
	Ethanol	CH ₂ CH ₂ OH / liquid		finite		
	Benzoic Acid	C _s H ₅ COOH / solid		0.29		
40.	Delizero riola	-0-0		0.20	1	
 	Which of the substance	es in the table can a	ct as eithe	er the solute	or the solvent when mixed with 100 grams of	:
	water at 20 °C?				6	
	a. NH ₃		c.	MgCl ₂		
	b. C ₆ H ₅ COOH		d.	CH ₃ CH ₂ O	DH	
41.	Which of these is an ex	vample of an evoth				
 71.	a. evaporation of wa		c.		hesis of glucose	
	-			_	-	
	b. melting ice		d.	combustio	on of gasoline	
			6			

_ 42. How much energy is released when 752 g of water at its freezing point freezes?

43.

Based on the above graph, which of the following substances show an inverse relationship between temperature and solubility?

a.	KCl	-	c.	NH ₄ Cl
b.	SO_2		d.	KNO ₃

TEMPERATURE °C

48			7°C and 1.00 atm is cooled at a constant pressure until
	the temperature is 11°C. Calculate the new		
	a. 1.4 L		3.7 L
40	b. 5.1 L		4.0 L
49	How many liters of NH_3 , at STP, will react with	th 5.	3 g O_2 to form NO_2 and water?
	$4\mathrm{NH}_3(g) + 7\mathrm{O}_2(g) \rightarrow 4\mathrm{NO}_2 + 6\mathrm{H}_2\mathrm{O}(g)$		
	a. 0.004 23 L		3.03 L
	b. 2.12 L	d.	6.49 L
50	What type of reaction is the reaction below $\Sigma_{\rm eq} = 0$	/?	
	$Fe_2O_3 \rightarrow Fe + O_2$		Combustion
	a. Synthesis/Combinationb. Decomposition	с. d.	Combustion Single Replacement
51	$P_4O_{10} + H_2O> H_3PO_4$	u.	Single Replacement
51	How many molecules of water are needed	to n	roduce 66.8 g of phosphoric acid?
	a. 2.74×10^1	-	6.16×10^{23}
	b. 6.16×10^1		61.6 x 10 ⁻²³
52	Select the set of coefficients that properly l	bala	nce the equation below.
	1 1 5		1
	$\underline{} Pb(NO_3)_2 + \underline{} NH_4Cl \rightarrow \underline{} PbCl_2 + \underline{}$	NF	I_4NO_3
	a. 1, 2, 1, 2		2, 1, 2, 1
50	b. 1, 2, 2, 1	d.	1, 2, 2, 2
53	What is the correct name for $Sn_3(PO_4)_2$?		
	a. tritin diphosphate		tin(III) phosphate
54	b. tin(II) phosphate	d.	tin(IV) phosphate
34	What is the formula for phosphoric acid? a. H ₂ PO ₃	c.	HPO ₂
	b. H_3PO_4		HPO ₄
55	1100	?	
	a. HCO_3 b. H_2CO_3		
	c. HC_2O_4		
	d. $H_2C_2O_4$		
56	The correct name for HBr is:		
,	a. hydrobromic acid	c.	hydrogen monobromide
	b. hydrogen bromide	d.	monohydrobromic acid
57	What is the correct formula for barium chlorate	e?	
	a. Ba(ClO) ₂	c.	$Ba(ClO_3)_2$
	b. $Ba(ClO_2)_2$	d.	BaCl ₂

 $_$ 58. Sketch a phase change diagram for water starting at 120 0 C & increasing to -60 0 C.

Consider the change in temerpature for your graph. Choose the best desription.

- a. ΔT and Endothermic d. $-\Delta T$ and Exothermic
- b. ΔT and Exothermic e. ΔT Niether Exothermic or
 - Endothermic

c. $-\Delta T$ and Endothermic

Multiple Response

Identify one or more choices that best complete the statement or answer the question.

- 59. Choose which example/s below are exothermic. Choose all the apply.
 - a. burning hydrogen gas
 - b. condensing steam

d. burning woode. boiling water

c. melting ice

Short Answer

- 60. It takes 770 joules of energy to raise the temperature of 50.0 g of mercury by 110°C. What is the specific heat of mercury?
- 61. How much heat is required to raise the temperature of 5.5×10^2 g of aluminum by 10°C? (specific heat of aluminum = $0.21 \frac{\text{cal}}{\text{g}^\circ \text{C}}$)
- 62. A 55.0-g piece of copper wire is heated, and the temperature of the wire changes from 19.0°C to 86.0°C. The amount of heat absorbed is 343 cal. What is the specific heat of copper?
- 63. What is a pressure of 0.520 atm equal to in mm of Hg?

True/False

Indicate whether the statement is true or false.

_ 64. The melting point and the freezing point of a water occur at the same temperature.

Thermodynamics Practice Test Answer Section

MULTIPLE CHOICE

1.	ANS: A St. 4b, 7a			
	PTS: 1	STA: 4b, 7a		
2.	ANS: A	PTS: 1		
3.	ANS: A	PTS: 1		
4.	ANS: B	PTS: 1	DIF: L2	REF: p. 385
	OBJ: 13.1.1	STA: Ch.4.b		-
5.	ANS: A	PTS: 1		
6.	ANS: A	PTS: 1	DIF: L2	REF: p. 394
	OBJ: 13.2.4	STA: Ch.4.d		
	ANS: D	PTS: 1		
8.	ANS: B	PTS: 1	DIF: L2	REF: p. 509
	OBJ: 17.1.3	STA: Ch.7.d		
	ANS: C	PTS: 1		
10.		PTS: 1	DIF: L1	REF: p. 520
11	OBJ: 17.3.1	STA: Ch.7.d		DEE 205
11.	ANS: B	PTS: 1	DIF: L2	REF: p. 385
10	OBJ: 13.1.1 ANS: A	STA: Ch.4.b		
	ANS: A ANS: C	PTS: 1 PTS: 1	DIF: L1	$DEE_{1} = 506$
15.		STA: Ch.7.a	DIF. LI	REF: p. 506
14	ANS: A	PTS: 1		
			DIF: L2	REF: n 391
10.	OBJ: 13.2.2	STA: Ch.7.a		REI : p. 571
16.	ANS: C	PTS: 1		
	ANS: A	PTS: 1		
	ANS: D			
	St. 7c			
	PTS: 1			
	ANS: C	PTS: 1		
	ANS: D	PTS: 1		
	ANS: B	PTS: 1		
22.	ANS: D	PTS: 1	DIF: L1	REF: p. 506
•••	OBJ: 17.1.2			
	ANS: C	PTS: 1		
24.		PTS: 1	DIF: L2	REF: p. 507
25	OBJ: 17.1.2			
		PTS: 1		
	ANS: E ANS: C	PTS: 1 PTS: 1		
21.	AND. U	F13. 1		

28	ANS:	В	PTS:	1				
	ANS:		PTS:					
	ANS:		PTS:		DIF:	T 1	DEE.	p. 387
50.		13.1.2		Ch.4.d	$D\Pi$.	LI	KLI.	p. 307
31	ANS:		PTS:		DIF:	12	DEE	p. 471 p. 472
51.		16.1.1		Ch.6.b	$D\Pi^{*}$.	L2	KLI [*] .	p. 471 p. 472
27	ANS:			1	DIF:	T 1	DEE.	n 181
52.		16.2.1		Ch.6.d	$D\Pi^{*}$.	LI	KEF.	p. 481
22	ANS:		PTS:		DIF:	1.2	DEE.	n 190 n 191
55.		16.2.1		Ch.6.d	DIF.	L2	KEF.	p. 480 p. 481
24	ANS:		PTS:		DIF:	12	DEE.	n 191
54.		ь 16.2.1			DIF:	LS	KEF:	p. 481
25				Ch.6.d	DIE.	1.2	DEE.	m 491 m 49 2
55.	ANS:	A 16.2.1	PTS:	Ch.6.d	DIF:	LS	KEF:	p. 481 p. 482
20					DIE.	1.2	DEE.	··· 192 ··· 194
30.	ANS:	в 16.2.2	PTS:		DIF:	L2	KEF:	p. 483 p. 484
27				Ch.6.d	DIE.	1.2	DEE.	··· 192 ··· 194
57.	ANS:		PTS:		DIF:	L2	KEF:	p. 483 p. 484
20		16.2.2		Ch.6.d	DIE	1.2	DEE.	. 492 494
38.	ANS:		PTS:		DIF:	L3	REF:	p. 483 p. 484
20		16.2.2	51A:	Ch.6.d				
39.	ANS:	C						
	St. 4c							
	PTS:	1	STA:	40				
40	ANS:		SIA.	40				
40.	St. 6a	D						
	51. Ua							
	PTS:	1	STA:	6a				
41	ANS:		0111	0 u				
71.	St. 7b	D						
	50.70							
	PTS:	1						
42.	ANS:							
	St. 7c							
	PTS:	1	STA:	7c				
43.	ANS:	В						
	St.6c							
	PTS:	1	STA:	6с				
44.	ANS:	А						
	St. 6c							
	PTS:	1	STA:	6с				
45.	ANS:	В	PTS:	1				
46.	ANS:	D	PTS:	1				
47.	ANS:	D	PTS:	1				

48.	ANS: St. 4c	С						
	PTS:	1	STA:	4c				
49.	ANS:		PTS:		DIF:	L2	REF:	p. 371
	OBJ:	12.3.1	STA:	Ch.3.d				
50.	ANS:	В	PTS:	1	STA:	3a	KEY:	Types of Reactions; Decomposition
51.	ANS:	С	PTS:	1				
52.	ANS:	А	PTS:	1	STA:	3a	KEY:	Balancing Equations
53.	ANS:	В	PTS:	1	DIF:	L3	REF:	p. 264 p. 277
	OBJ:	9.5.3	STA:	Ch.2.b Ch.5				
54.	ANS:	В	PTS:	1	DIF:	L2	REF:	p. 272
	OBJ:	9.4.2	STA:	Ch.5				
55.	ANS:	В	PTS:	1				
56.	ANS:	А						
	ST 1A							
	PTS:	1						
57.	ANS:	С	PTS:	1	DIF:	L3	REF:	p. 257 p. 264
	OBJ:	9.2.2 9.5.2	STA:	Ch.5				
58.	ANS:	D	PTS:	1				

MULTIPLE RESPONSE

59. ANS: A, B, D PTS: 1

SHORT ANSWER

60. ANS: Ans: Specific heat = $\frac{770 \text{ J}}{50 \text{ g} \cdot 110^{\circ}\text{C}} = 0.14 \frac{\text{J}}{\text{g}^{\circ}\text{C}}$ PTS: 1 DIF: L2 REF: p. 512 OBJ: 17.2.1 STA: Ch.7.d 61. ANS: Heat energy = mass \times specific heat \times temperature change $= 550 \text{ g} \times 0.21 \frac{\text{cal}}{\text{g}^{\circ}\text{C}} \times 10^{\circ}\text{C}$ $= 1.2 \times 10^3$ cal PTS: 1 DIF: L2 REF: p. 508 OBJ: 17.1.3 STA: Ch.7.d

62. ANS:

 $\Delta T = 86.0^{\circ}\text{C} - 19.0^{\circ}\text{C} = 67.0^{\circ}\text{C}$ specific heat = $\frac{\text{heat absorbed}}{\text{mass temperature change}}$ = $\frac{343 \text{ cal}}{55.0 \text{ g} \cdot 67.0^{\circ}\text{C}}$ = $9.31 \times 10^{-2} \frac{\text{cal}}{\text{g}^{\circ}\text{C}}$ PTS: 1 DIF: L2 REF: p. 509 | p. 510
OBJ: 17.1.3 STA: Ch.7.d
63. ANS:
0.520 atm × 760 mm Hg / 1 atm = 395 mm Hg
PTS: 1 DIF: L2 REF: p. 387 OBJ: 13.1.2
STA: Ch.4.d

TRUE/FALSE

64. ANS: T PTS: 1