Name:	Class: _		Date:	ID: A				
Practice T	est Chapter 12							
Multiple Ch Your test will for the ch 12	also have a blast from the past se	ection with questi	ons over past chapters. Th	here will be no retakes available				
t	H_2O_2 , hydrogen peroxide, naturally o lower the energy of activation now What type of substance is MnO 2?	eeded for this rea						
_	an inhibitor a catalyst	c. d.	a product a reactant					
2.	$C_3H_8 + O_2 \longrightarrow CO_2 -$	⊦ H ₂ O						
7	This chemical equation represents vater is 2	the combustion of c.		balanced, the coefficient for				
_	o. 4	d.	16					
	How many atoms are contained in 5.16×10^{30}	• •	m (Pt)? 1.20×10 ²⁴					
	o. 3.01×10^{23}	d.	1.10×10^{28}					
	How many moles of CH, are contains. 16.00 moles a. 12.00 moles	ined in 96.0 gran c. d.	ns of CH ₄ ? 6.00 moles 3.00 moles					
_	$Fe_2O_3 + 3CO \rightarrow 2I$	Fe + 3CO	2					
5.	In this reaction, how many grams of Fe ₂ O ₃ are required to completely react with 84 grams of CO?							
	a. 64 b. 80	c. d.	160 1400					
	$Mg_3N_2(s) + 6H_2O(l)$ —	•						
6.	2NH ₃ (aq) + 3Mg	(OH) ₂ (s)						
I	f 54.0 grams of water are mixed woroduced?	vith excess magn	esium nitride, then how ma	any grams of ammonia are				
a	1.00 grams 17.0 grams		51.0 grams 153 grams					
7	3CuCl ₂ + 2Al → 2	AICI ₃ + 3C	u					
	A mass of 5.4 grams of aluminum (Al) reacts with an excess of copper (II) chloride (CuCl ₂) in solution, as shown above. What mass of solid copper (Cu) is produced?							
	. 28 grams o. 8.5 grams	c. d.	38 grams 19 grams					
	What is the density of 1 mole of N		1) grains					
г	2.05 g/L b. 1.34 g/L	c. d.	1.03 g/L 0.513 g/L					

9. What type of reaction is the reaction below?

$$_$$
 Fe₂O₃ \rightarrow $_$ Fe + $_$ O₂

a. Synthesis/Combination

c. Combustion

b. Decomposition

d. Single Replacement

10. What type of reaction is the reaction below?

$$_$$
 Al + $_$ CuSO₄ \rightarrow $_$ Al₂(SO₄)₃ + $_$ Cu

a. Synthesis/Combination

c. Double Replacement

b. Decomposition

d. Single Replacement

11. Select the set of coefficients that properly balance the equation below.

$$_$$
 Pb(NO₃)₂ + $_$ NH₄Cl \rightarrow $_$ PbCl₂ + $_$ NH₄NO₃

a. 1, 2, 1, 2

c. 2, 1, 2, 1

b. 1, 2, 2, 1

d. 1, 2, 2, 2

12. The products created from the reactants below would be:

$$_$$
 NaF + $_$ AgNO₃ \rightarrow ?

a. NaNO₃, AgF

c. Na₃N, AgF, O₂

b. FNO₃, NaAg

d. NaNO, AgF, O₂

13. The products created from the reactants below would be:

$$\underline{\hspace{0.5cm}}$$
 Mg + $\underline{\hspace{0.5cm}}$ H₂SO₄ \rightarrow ?

- a. Manganese Sulfate and Hydrogen Gas
- b. Manganese Hydride and Sulfur Tetroxide Gas
- c. Magnesium Sulfate and Hydrogen Gas
- d. Magnesium Hydride and Sulfur Tetroxide Gas

14. Which of the following is a correct interpretation of this balanced equation?

$$2KClO_3 \rightarrow 2KCl + 3O_2$$

- a. Two molecules of potassium chlorate c. produce two molecules of potassium chloride and three molecules of oxygen.
- b. Two formula units of potassium chlorate produce two formula units of potassium chloride and three molecules of oxygen.
- c. Two formula units of potassium chlorite produce two formula units of potassium chloride and three molecules of oxygen.
- d. Two formula units of potassium chlorate produce two formula units of potassium chloride and two molecules of oxygen.

15. This is the Reaction that occurs when an airbag goes off.

$$2~NaN_{3(s)} \rightarrow 2Na_{(s)}~+~3~N_{2(g)}$$

If an airbag has 100 grams of sodium azide (NaN₃), how many liters of nitrogen gas are produced? Assume STP

a. 67.2L

c. 51.7L

b. 22.4L

d. 5.8L

Name: _____

ID: A

 $\underline{}$ 16. $2\text{CaCO}_3 + 2\text{SO}_2 + \text{O}_2 \rightarrow 2\text{CaSO}_4 + 2\text{CO}_2$

If the above reaction has a 96.8% yield, how many actual grams of $CaSO_4$ are recovered when 5.24g of SO_2 are used in the presence of excess $CaCO_3$ and O_2 ?(Hint: Calculate the theoretical yield first)

a. 10.77g CaSO₄

c. 10.00 g CaSO₄

b. 11.13 g CaSO₄

d. 9.36 g CaSO₄

17. Mg +
$$2 \text{ HCl} \rightarrow \text{MgCl}_2 + \text{H}_2$$

At STP, what is the total number of liters of hydrogen gas produced when 3.00 moles of hydrochloric acid solution is completely consumed?

a. 11.2L

c. 33.6 L

b. 22.4 L

- d. 44.8 L
- 18. Which of these expressions is a correct interpretation of the balanced equation?

$$2S + 3 O_2 \longrightarrow 2 SO_3$$

- a. 2 moles of S + 3 moles of oxygen --> 2 moles of SO₃
- c. $2 g \text{ of } S + 3 g \text{ of } O_2 \longrightarrow 2 g \text{ of } SO_3$
- b. 2 atoms of S + 6 molecules of oxygen --> 2 molecules of SO₃
- d. None of the above

Practice Test Chapter 12 Answer Section

MULTIPLE CHOICE

1.	ANS:	В	PTS:	1	STA:	8c			
2.	ANS:	В	PTS:	1					
3.	ANS:	В	PTS:	1	STA:	3d	KEY:	Mass to Representative Particles	
4.	ANS:	C	PTS:	1	STA:	3d	KEY:	Mass to Moles	
5.	ANS:	C	PTS:	1	STA:	3e			
6.	ANS:	В	PTS:	1	STA:	3e			
7.	ANS:	D	PTS:	1	STA:	3e			
8.	ANS:	A	PTS:	1	STA:	3d			
	KEY:	density of a gas at STP; molar mass; molar volume							
9.	ANS:	В	PTS:	1	STA:	3a	KEY:	Types of Reactions; Decomposition	
10.	ANS:	D	PTS:	1	STA:	3a			
	KEY:	Types of Reactions; Single Replacement							
11.	ANS:	A	PTS:	1	STA:	3a	KEY:	Balancing Equations	
12.	ANS:	A	PTS:	1	STA:	3a	KEY:	Predicting Products	
13.	ANS:	C	PTS:	1	STA:	3a	TOP:	Predicting Products by Name	
	KEY:	Single Replace	ement;						
14.	ANS:	C							
	ST 3								
	PTS:								
15.	ANS:	C							
	ST 3								
	PTS:	1							
16									
10.	ANS: ST. 3	A							
	31.3								
	PTS:	1							
17	ANS:								
17.	ST 3								
	310								
	PTS:	1							
18.	ANS:	A	PTS:	1					