1. Which of the following metric relationships is incorrect?
[A] 1 microliter $=10^{-6}$ liters
[B] 10 decimeters $=1$ meter
[C] 10^{3} milliliters $=1$ liter
[D] 1 gram $=10^{3}$ kilograms
[E] 1 gram $=10^{2}$ centigrams
2. Which of the following is an example of a quantitative observation?
[A] The temperature of the liquid is $60^{\circ} \mathrm{C}$.
[B] Solution 1 is much darker than solution 2.
[C] The piece of metal is longer than the piece of wood.
[D] The liquid in beaker A is blue.
[E] At least two of these (a-d) are quantitative observations.
3. Express 0.00560 in exponential notation.
[A] 5.6×10^{-3}
[B] 5.60
[C] 5.60×10^{3}
[D] 5.60×10^{-3}
[E] none of these
4. A titration was performed to find the concentration of hydrochloric acid with the following results:

Trial	Molarity
1	1.25 ± 0.01
2	1.24 ± 0.01
3	1.26 ± 0.01

The actual concentration of HCl was determined to be 1.000 M ; the results of the titration are:
[A] accurate but imprecise.
[B] precise but inaccurate.
[C] accuracy and precision are impossible to determine with the available information.
[D] both inaccurate and imprecise.
[E] both accurate and precise.
5. A scientist obtains the number 0.045006700 on a calculator. If this number actually has four (4) significant figures, how should it be written?
[A] 0.4567
[B] 0.04501
[C] 0.4501
[D] 0.04500
[E] 0.045
6. How many significant figures are there in the number 3.1400 ?
[A] 4
[B] 3
[C] 5
[D] 2
[E] 1
7. A piece of indium with a mass of 16.6 g is submerged in $46.3 \mathrm{~cm}^{3}$ of water in a graduated cylinder. The water level increases to $48.6 \mathrm{~cm}^{3}$. The correct value for the density of indium from these data is:
[A] $0.14 \mathrm{~g} / \mathrm{cm}^{3}$
[B] $7.2 \mathrm{~g} / \mathrm{cm}^{3}$
[C] more than $0.1 \mathrm{~g} / \mathrm{cm}^{3}$ away from any of these values.
[D] $7.217 \mathrm{~g} / \mathrm{cm}^{3}$
[E] $0.138 \mathrm{~g} / \mathrm{cm}^{3}$
8. Express 165,000 in exponential notation.
[A] 1.65000×10^{5}
[B] 165×10^{3}
[C] 1.6500×10^{-5}
[D] 1.65×10^{-5}
[E] 1.65×10^{5}
9. One kilogram contains this many grams:
[A] 10
[B] 100
[C] 1000
[D] $1 / 10$
[E] 1/1000
10. Using the rules of significant figures, calculate the following:

$$
\frac{6.167+83}{5.10}
$$

[A] 17
[B] 17.48
[C] 20
[D] 18
[E] 17.5
11. Using the rules of significant figures, calculate the following: 4.0021-0.004
[A] 3.998
[B] 3.9981
[C] 4.00
[D] 4.0
[E] 4
12. How many significant figures are there in the number 0.04560700 ?
[A] 9
[B] 4
[C] 7
[D] 5
[E] 8
13. Convert 5687.4 g to mg .
[A] 568.74 mg
[B] $5.6874 \times 10^{6} \mathrm{mg}$
[C] 5.6874 mg
[D] 56.784 mg
[E] $5.6874 \times 10^{3} \mathrm{mg}$
14. Express the volume $245 \mathrm{~cm}^{3}$ in liters.
[A] 24.5 L
[B] 2.45 L
[C] 245 L
[D] 0.0245 L
[E] 0.245 L
15. The mass of 24 kg equals
[A] $2.4 \times 10^{4} \mathrm{~g}$
[B] 0.024 g
[C] 2400 g
[D] 240 g
[E] 0.24 g
16. Convert 0.6571 m to mm .
[A] $6.571 \times 10^{-4} \mathrm{~mm}$
[B] 0.06571 mm
[C] $6.571 \times 10^{-3} \mathrm{~mm}$
[D] 657.1 mm
[E] none of these
17. One second contains this many picoseconds.
[A] 1×10^{-12}
[B] 1×10^{-9}
[C] 1×10^{9}
[D] 1×10^{15}
[E] 1×10^{12}
18. Convert 4301 mL to qts. ($1 \mathrm{~L}=1.06 \mathrm{qt}$)
[A] 4559 qts
[B] 4058 qts
[C] 4058×10^{-3} qts
[D] 4.058 qts
[E] 4.559 qts
19. Convert 761 mi to km . $(1 \mathrm{~m}=1.094 \mathrm{yds}, 1 \mathrm{mi}=1760 \mathrm{yds})$
[A] $1.22 \times 10^{9} \mathrm{~km}$
[B] 1220 km
[C] 832 km
[D] 696 km
[E] 1470 km
20. 423 Kelvin equals
[A] $150 .{ }^{\circ} \mathrm{C}$
[B] $696 .{ }^{\circ} \mathrm{F}$
[C] $273 .{ }^{\circ} \mathrm{F}$
[D] $150 .{ }^{\circ} \mathrm{F}$
[E] 696. ${ }^{\circ} \mathrm{C}$
21. In a recent accident some drums of uranium hexafluoride were lost in the English Channel. The melting point of uranium hexafluoride is $64.5^{\circ} \mathrm{C}$. What is the melting point of uranium hexafluoride on the Fahrenheit scale? $\left(T_{\mathrm{F}}=T_{\mathrm{C}} \times\left(9^{\circ} \mathrm{F} / 5^{\circ} \mathrm{C}\right)+32^{\circ} \mathrm{F}\right)$
[A] $122^{\circ} \mathrm{F}$
[B] $1.35^{\circ} \mathrm{F}$
[C] $148^{\circ} \mathrm{F}$
[D] $116^{\circ} \mathrm{F}$
[E] $82.3^{\circ} \mathrm{F}$
22. The boiling of water is a
[A] chemical and physical damage.
[B] chemical change because heat is needed for the process to occur.
[C] chemical change because a gas (steam) is given off.
[D] physical change because the gaseous water is chemically the same as the liquid.
[E] physical change because the water merely disappears.
23. A solution is also called a
[A] pure mixture.
[B] distilled mixture.
[C] homogeneous mixture.
[D] compound.
[E] heterogeneous mixture.
24. An example of a pure substance is
[A] compounds.
[B] pure water.
[C] carbon dioxide.
[D] elements.
[E] all of these
25. Which of the following pairs of compounds can be used to illustrate the law of multiple proportions?
[A] NH_{4} and $\mathrm{NH}_{4} \mathrm{Cl}$
[B] $\mathrm{H}_{2} \mathrm{O}$ and HCl
[C] NO and NO_{2}
[D] CH_{4} and CO_{2}
[E] ZnO_{2} and ZnCl_{2}
26. Which of the following statements from Dalton's atomic theory is no longer true, according to modern atomic theory?
[A] All atoms of a given element are identical.
[B] Atoms are not created or destroyed in chemical reactions.
[C] Elements are made up of tiny particles called atoms.
[D] Atoms are indivisible in chemical reactions.
[E] All of these statements are true according to modern atomic theory.
27. The first people to attempt to explain why chemical changes occur were
[A] metallurgists.
[B] alchemists.
[C] the Greeks.
[D] physicians.
[E] physicists.
28. Which of the following pairs can be used to illustrate the law of multiple proportions?
[A] SO and SO_{2}
[B] KCl and KClO_{2}
[C] CO and CaCo_{3}
[D] $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{H}_{2} \mathrm{~S}$
[E] $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
29. The first scientist to show that atoms emit any negative particles was
[A] Lord Kelvin.
[B] J. J. Thomson.
[C] John Dalton.
[D] William Thomson.
[E] Ernest Rutherford.
30. Which one of the following statements about atomic structure is false?
[A] The protons and neutrons in the nucleus are very tightly packed.
[B] Almost all of the mass of the atom is concentrated in the nucleus.
[C] The electrons occupy a very large volume compared to the nucleus.
[D] The number of protons and neutrons is always the same in the neutral atom.
[E] All of these statements (a-d) are true.
31. Rutherford's experiment was important because it showed that:
[A] radioactive elements give off alpha particles.
[B] the mass of the atom is uniformly distributed throughout the atom.
[C] gold foil can be made to be only a few atoms thick.
[D] an atom is mostly empty space.
[E] a zinc sulfide screen scintillates when struck by a charged particle.
32. Which of the following name(s) is(are) correct?

1. sulfide S^{2-}
2. ammonium chloride $\mathrm{NH}_{4} \mathrm{Cl}$
3. acetic acid $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
4. barium oxide BaO
[A] all
[B] none
[C] 1, 3, 4
[D] 1, 2
[E] 3, 4
5. Which of the following atomic symbols is incorrect?
[A] ${ }_{15}^{32} \mathrm{P}$
[B] ${ }_{8}^{14} \mathrm{~N}$
[C] ${ }_{19}^{39} \mathrm{~K}$
[D] ${ }_{6}^{14} \mathrm{C}$
[E] ${ }_{17}^{37} \mathrm{Cl}$
6. The element rhenium (Re) exists as two stable isotopes and 18 unstable isotopes. Rhenium185 has in its nucleus
[A] 75 protons, 75 neutrons.
[B] 75 protons, 110 neutrons.
[C] 130 protons, 75 neutrons.
[D] not enough information is given.
[E] 75 protons, 130 neutrons.
7. ${ }_{20}^{40} \mathrm{Ca}^{2+}$ has
[A] 20 protons, 22 neutrons, and 18 electrons.
[B] 20 protons, 20 neutrons, and 22 electrons.
[C] 20 protons, 20 neutrons, and 18 electrons.
[D] 22 protons, 20 neutrons, and 20 electrons.
[E] 22 protons, 18 neutrons, and 18 electrons.
8. The numbers of protons, neutrons, and electrons in ${ }_{19}^{39} \mathrm{~K}^{+}$are:
[A] $20 \mathrm{p}, 19 \mathrm{n}, 19 \mathrm{e}$
[B] $20 \mathrm{p}, 19 \mathrm{n}, 20 \mathrm{e}$
[C] $19 \mathrm{p}, 20 \mathrm{n}, 19 \mathrm{e}$
[D] $19 \mathrm{p}, 20 \mathrm{n}, 20$ e
[E] $19 \mathrm{p}, 20 \mathrm{n}, 18 \mathrm{e}$
9. By knowing the number of protons a neutral atom has, you should be able to determine
[A] the name of the atom.
[B] the number of electrons in the neutral atom.
[C] the number of neutrons in the neutral atom.
[D] two of these.
[E] none of these
10. How many oxygen atoms are there in one formula unit of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$?
[A] 8
[B] 6
[C] 2
[D] 4
[E] none of these
11. Which metals form cations with varying positive charges?
[A] Group 2 metals
[B] metalloids
[C] Group 1 metals
[D] transition metals
[E] Group 3 metals
12. The correct name for LiCl is
[A] monolithium monochloride
[B] lithium (I) chloride
[C] lithium monochloride
[D] lithium chloride
[E] monolithium chloride
13. The correct name for FeO is
[A] iron monoxide
[B] iron (I) oxide
[C] iron (III) oxide
[D] iron (II) oxide
[E] iron oxide
14. The formula for calcium bisulfate is
[A] $\mathrm{Ca}\left(\mathrm{SO}_{4}\right)_{2}$
[B] CaS_{2}
[C] $\mathrm{Ca}_{2} \mathrm{HSO}_{4}$
[D] $\mathrm{Ca}\left(\mathrm{HSO}_{4}\right)_{2}$
[E] $\mathrm{Ca}_{2} \mathrm{~S}$
15. Which of the following is incorrectly named?
[A] NO^{3-}, nitrite ion
[B] $\mathrm{Mg}(\mathrm{OH})_{2}$, magnesium hydroxide
[C] $\mathrm{NH}_{4} \mathrm{ClO}_{4}$, ammonium perchlorate
[D] $\mathrm{PO}_{4}{ }^{3-}$, phosphate ion
[E] $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$, lead(II) nitrate
16. All of the following are in aqueous solution. Which is incorrectly named?
[A] $\mathrm{H}_{3} \mathrm{PO}_{4}$, phosphoric acid
[B] $\mathrm{H}_{2} \mathrm{CO}_{3}$, carbonic acid
[C] $\mathrm{H}_{2} \mathrm{SO}_{4}$, sulfuric acid
[D] HCl , hydrochloric acid
[E] HCN, cyanic acid
17. All of the following are in aqueous solution. Which is incorrectly named?
[A] HBr , bromic acid
[B] $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, acetic acid
[C] $\mathrm{H}_{2} \mathrm{SO}_{3}$, sulfurous acid
[D] HNO_{2}, nitrous acid
[E] HClO_{3}, chloric acid
18. Which of the following pairs is incorrect?
[A] $\mathrm{NH}_{4} \mathrm{Br}$, ammonium bromide
[B] CuCl, copper(I) chloride
[C] BaPO_{4}, barium phosphate
[D] MnO_{2}, manganese (IV) oxide
[E] $\mathrm{K}_{2} \mathrm{CO}_{3}$, potassium carbonate
19. Complete the following table.

Symbol	\# protons	\# neutrons	\# electrons	Net Charge
${ }_{82}^{206} \mathrm{~Pb}$				
	31	38		3^{+}
	52	75	54	
Mn		29		2^{+}

Name the following compounds:
48. CCl_{4}
49. $\mathrm{N}_{2} \mathrm{O}_{3}$

Write the formula for:
50. dinitrogen trioxide
51. acetic acid
52. Bromine exists naturally as a mixture of bromine-79 and bromine-81 isotopes. An atom of bromine-79 contains
[A] 44 protons, 44 electrons, and 35 neutrons.
[B] 34 protons and 35 electrons, only. [C] 35 protons, 44 neutrons, 35 electrons.
[D] 35 protons, 79 neutrons, and 35 electrons.
[E] 79 protons, 79 electrons, and 35 neutrons.
53. Gallium consists of two isotopes of masses 68.95 amu and 70.95 amu with abundances of 60.16% and 39.84%, respectively. What is the average atomic mass of gallium?
[A] 69.55
[B] 70.15
[C] 71.95
[D] 69.75
[E] 69.95

Reference: 1.3
[1] [D]

Reference: 1.2
[2] [A]

Reference: 1.5
[3] [D]

Reference: 1.4
[4] [B]

Reference: 1.5
[5] [B]

Reference: 1.5
[6] [C]

Reference: 1.5,8
[7] [B]

Reference: 1.5
[8] [E]

Reference: 1.3
[9] [C]

Reference: 1.5
[10] [A]

Reference: 1.5
[11] [A]

Reference: 1.5
[12] [C]

Reference: 1.3
[13] [B]

Reference: 1.3
[14] [E]

Reference: 1.3
[15] [A]

Reference: 1.3
[16] [D]

Reference: 1.3
[17] [E]

Reference: 1.6
[18] [E]

Reference: 1.6
[19] [B]

Reference: 1.7
[20] [A]

Reference: 1.7
[21] [C]

Reference: 1.9
[22] [D]

Reference: 1.9
[23] [C]

Reference: 1.9
[24] [E]

Reference: 2.2
[25] [C]

Reference: 2.3
[26] [A]

Reference: 2.1
[27] [C]

Reference: 2.2
[28] [A]

Reference: 2.4
[29] [B]

Reference: 2.4,5
[30] [D]

Reference: 2.4
[31] [D]

Reference: 2.8
[32] [A]

Reference: 2.5
[33] [B]

Reference: 2.5
[34] [B]

Reference: 2.5
[35] [C]

Reference: 2.5
[36] [E]

Reference: 2.5
[37] [D]

Reference: 2.8
[38] [A]

Reference: 2.7,2.8
[39] [D]

Reference: 2.8
[40] [D]

Reference: 2.8
[41] [D]

Reference: 2.8
[42] [D]

Reference: 2.8
[43] [A]

Reference: 2.8
[44] [E]

Reference: 2.8
[45] [A]

Reference: 2.8
[46] [C]

Reference: 2.5

Symbol	\# protons	\# neutrons	\# electrons	Net Charge
206 82	82	124	82	0
Ga	31	38	28	3^{+}
Te	52	75	54	2^{-}
Mn	25	29	23	2^{+}

Reference: 2.8
[48] carbon tetrachloride

Reference: 2.8
[49] dinitrogen trioxide

Reference: 2.8
[50] $\mathrm{N}_{2} \mathrm{O}_{3}$

Reference: 2.8
[51] $\mathrm{CH}_{3} \mathrm{COOH}$

Reference: 3.1
[52] [C]

Reference: 3.1
[53] [D]

