- 1. Which of the following metric relationships is incorrect?
 - [A] 1 microliter = 10^{-6} liters
 - [D] 1 gram = 10^3 kilograms [C] 10^3 milliliters = 1 liter
 - [E] 1 gram = 10^2 centigrams
- 2. Which of the following is an example of a quantitative observation?
 - [A] The temperature of the liquid is 60°C.
 - [B] Solution 1 is much darker than solution 2.
 - [C] The piece of metal is longer than the piece of wood.
 - [D] The liquid in beaker A is blue.
 - [E] At least two of these (a-d) are quantitative observations.
- 3. Express 0.00560 in exponential notation.

[C] 5.60×10^3 [D] 5.60×10^{-3} [A] 5.6×10^{-3} [B] 5.60 [E] none of these

4. A titration was performed to find the concentration of hydrochloric acid with the following results:

Trial	Molarity
1	1.25 ± 0.01
2	1.24 ± 0.01
3	1.26 ± 0.01

The actual concentration of HCl was determined to be 1.000 M; the results of the titration are:

- [A] accurate but imprecise. [B] precise but inaccurate.
- [C] accuracy and precision are impossible to determine with the available information.
- [D] <u>both</u> inaccurate and imprecise. [E] <u>both</u> accurate and precise.
- 5. A scientist obtains the number 0.045006700 on a calculator. If this number actually has four (4) significant figures, how should it be written?

[A] 0.4567 [B] 0.04501 [C] 0.4501 [D] 0.04500 [E] 0.045

- 6. How many significant figures are there in the number 3.1400?
 - [C] 5 [A] 4 [B] 3 [D] 2 [E] 1

[B] 10 decimeters = 1 meter

7.	A piece of indium cylinder. The wat from these data is	n with a mass er level incre :	s of 16.6 g is submerged eases to 48.6 cm ³ . The c	l in 46.3 cm ³ of wa correct value for the	ter in a graduated e density of indium	
	[A] 0.14 g/cm ³		[B] 7.2 g/cm ³			
	[C] more than 0.	1 g/cm ³ away	y from any of these valu	ues.		
	[D] 7.217 g/cm ³		[E] 0.1	138 g/cm ³		
8.	Express 165,000 i	in exponentia	al notation.			
	[A] 1.65000 × 10)5	[B] 165×10^3	[C] 1.650	0×10^{-5}	
	[D] 1.65×10^{-5}		[E] 1.65×10^5			
9.	One kilogram con	tains this ma	any grams:			
	[A] 10	[B] 100	[C] 1000	[D] 1/10	[E] 1/1000	
10.	Using the rules of $\frac{6.167 + 83}{5.10}$	significant f	figures, calculate the fol	lowing:		
	[A] 17	[B] 17.48	[C] 20	[D] 18	[E] 17.5	
11.	Using the rules of	significant f	figures, calculate the fol	llowing: 4.0021 – 0).004	
	[A] 3.998	[B] 3.9981	[C] 4.00	[D] 4.0	[E] 4	
12.	How many signifi	icant figures	are there in the number	0.04560700?		
	[A] 9	[B] 4	[C] 7	[D] 5	[E] 8	
13.	Convert 5687.4 g	to mg.				
	[A] 568.74 mg		[B] 5.6874×10^6 mg	[C] 5.687	4 mg	
	[D] 56.784 mg		[E] 5.6874×10^3 mg			
14.	Express the volum	ne 245 cm ³ in	n liters.			
	[A] 24.5 L	[B] 2.45 L	[C] 245 L	[D] 0.0245 L	[E] 0.245 L	
15.	The mass of 24 kg	g equals				
	[A] 2.4×10^4 g	[B] 0.024	4 g [C] 2400 g	[D] 240 g	[E] 0.24 g	

16. Convert 0.6571 m to mm.

[A] $6.571 \times 10^{-4} \text{ mm}$	[B] 0.06571 mm	$[C] 6.571 \times 10^{-3} \text{ mm}$
[D] 657.1 mm	[E] none of these	

17. One second contains this many picoseconds.

[A] 1×10^{-12} [B] 1×10^{-9} [C] 1×10^{9} [D] 1×10^{15} [E] 1×10^{12}

- 18. Convert 4301 mL to qts. (1 L = 1.06 qt) [A] 4559 qts [B] 4058 qts [C] 4058×10^{-3} qts [D] 4.058 qts [E] 4.559 qts
- 19. Convert 761 mi to km. (1 m = 1.094 yds, 1 mi = 1760 yds)[A] $1.22 \times 10^9 \text{ km}$ [B] 1220 km [C] 832 km [D] 696 km [E] 1470 km
- 20. 423 Kelvin equals [A] 150. °C [B] 696. °F [C] 273. °F [D] 150. °F [E] 696. °C
- 21. In a recent accident some drums of uranium hexafluoride were lost in the English Channel. The melting point of uranium hexafluoride is 64.5°C. What is the melting point of uranium hexafluoride on the Fahrenheit scale? $(T_F = T_C \times (9^\circ F / 5^\circ C) + 32^\circ F)$
 - [A] 122°F [B] 1.35°F [C] 148°F [D] 116°F [E] 82.3°F
- 22. The boiling of water is a
 - [A] chemical and physical damage.
 - [B] chemical change because heat is needed for the process to occur.
 - [C] chemical change because a gas (steam) is given off.
 - [D] physical change because the gaseous water is chemically the same as the liquid.
 - [E] physical change because the water merely disappears.

23. A solution is also called a

- [A] pure mixture. [B] distilled mixture. [C] homogeneous mixture.
- [D] compound. [E] heterogeneous mixture.

- 24. An example of a pure substance is
 - [A] compounds.[B] pure water.[C] carbon dioxide.[D] elements.[E] all of these
- 25. Which of the following pairs of compounds can be used to illustrate the law of multiple proportions?

[A] NH_4 and NH_4Cl	[B] H ₂ O and HCl	[C] NO and NO_2
[D] CH ₄ and CO ₂	[E] ZnO ₂ and ZnCl ₂	

- 26. Which of the following statements from Dalton's atomic theory is no longer true, according to modern atomic theory?
 - [A] All atoms of a given element are identical.
 - [B] Atoms are not created or destroyed in chemical reactions.
 - [C] Elements are made up of tiny particles called atoms.
 - [D] Atoms are indivisible in chemical reactions.
 - [E] All of these statements are true according to modern atomic theory.
- 27. The first people to attempt to explain why chemical changes occur were
 - [A] metallurgists.[B] alchemists.[C] the Greeks.[D] physicians.[E] physicists.
- 28. Which of the following pairs can be used to illustrate the law of multiple proportions?

[A] SO and SO ₂	[B] KCl and KClO ₂	[C] CO and CaCo ₃
[D] H_2SO_4 and H_2S	[E] H_2O and $C_{12}H_{22}O_{11}$	

- 29. The first scientist to show that atoms emit any negative particles was
 - [A] Lord Kelvin. [B] J. J. Thomson. [C] John Dalton.
 - [D] William Thomson. [E] Ernest Rutherford.

- 30. Which one of the following statements about atomic structure is false?
 - [A] The protons and neutrons in the nucleus are very tightly packed.
 - [B] Almost all of the mass of the atom is concentrated in the nucleus.
 - [C] The electrons occupy a very large volume compared to the nucleus.
 - [D] The number of protons and neutrons is always the same in the neutral atom.
 - [E] All of these statements (a-d) are true.
- 31. Rutherford's experiment was important because it showed that:
 - [A] radioactive elements give off alpha particles.
 - [B] the mass of the atom is uniformly distributed throughout the atom.
 - [C] gold foil can be made to be only a few atoms thick.
 - [D] an atom is mostly empty space.
 - [E] a zinc sulfide screen scintillates when struck by a charged particle.

32. Which of the following name(s) is(are) correct?

- 1. sulfide S^{2-}
- 2. ammonium chloride NH₄Cl
- 3. acetic acid $HC_2H_3O_2$
- 4. barium oxide BaO
- [A] all [B] none [C] 1, 3, 4 [D] 1, 2 [E] 3, 4
- 33. Which of the following atomic symbols is incorrect?
 - $[B] {}^{14}_{8}N \qquad [C] {}^{39}_{19}K$ $[A] {}^{32}_{15}P$ $[D]_{6}^{14}C$ $[E] {}^{37}_{17}Cl$
- 34. The element rhenium (Re) exists as two stable isotopes and 18 unstable isotopes. Rhenium-185 has in its nucleus
 - [A] 75 protons, 75 neutrons. [B] 75 protons, 110 neutrons.
 - [C] 130 protons, 75 neutrons. [D] not enough information is given.
 - [E] 75 protons, 130 neutrons.

35. ${}^{40}_{20}$ Ca²⁺ has

- [A] 20 protons, 22 neutrons, and 18 electrons.
- [B] 20 protons, 20 neutrons, and 22 electrons.
- [C] 20 protons, 20 neutrons, and 18 electrons.
- [D] 22 protons, 20 neutrons, and 20 electrons.
- [E] 22 protons, 18 neutrons, and 18 electrons.
- 36. The numbers of protons, neutrons, and electrons in $^{39}_{19}$ K⁺ are:
 - [A] 20 p, 19 n, 19 e[B] 20 p, 19 n, 20 e[C] 19 p, 20 n, 19 e[D] 19 p, 20 n, 20 e[E] 19 p, 20 n, 18 e

37. By knowing the number of protons a neutral atom has, you should be able to determine

- [A] the name of the atom. [B] the number of electrons in the neutral atom.
- [C] the number of neutrons in the neutral atom. [D] two of these.
- [E] none of these
- 38. How many oxygen atoms are there in one formula unit of $Ca_3(PO_4)_2$?

	[A] 8	[B] 6	[C] 2	[D] 4	[E] none of these
39.	Which metals form	n cations wit	h varying positive char	ges?	
	[A] Group 2 meta	lls	[B] metalloids	[C] Grou	p 1 metals
	[D] transition met	tals	[E] Group 3 metals		
40.	The correct name f	for LiCl is			
	[A] monolithium	monochlorid	le	[B] lithiu	m (I) chloride
	[C] lithium mono	chloride	[D] lithium chloride	[E] mono	olithium chloride
41.	The correct name f	for FeO is			
	[A] iron monoxid	e	[B] iron (I) oxide	[C] iron ((III) oxide
	[D] iron (II) oxide	e	[E] iron oxide		
42.	The formula for ca	llcium bisulf	ate is		
	[A] $Ca(SO_4)_2$	[B] CaS ₂	[C] Ca ₂ HSO ₄	[D] Ca(HSO ₄) ₂	[E] Ca ₂ S

[A] HBr, bromic acid
[B] HC₂H₃O₂, acetic acid
[C] H₂SO₃, sulfurous acid
[E] HClO₃, chloric acid

- 46. Which of the following pairs is incorrect?
 - [A] NH₄Br, ammonium bromide

[B] CuCl, copper(I) chloride

[D] MnO₂, manganese (IV) oxide

- [C] BaPO₄, barium phosphate
- [E] K_2CO_3 , potassium carbonate
- 47. Complete the following table.

Symbol	# protons	# neutrons	# electrons	Net Charge
²⁰⁶ ₈₂ Pb				
	31	38		3+
	52	75	54	
Mn		29		2+

Name the following compounds:

48. CCl₄

49. N₂O₃

Write the formula for:

- 50. dinitrogen trioxide
- 51. acetic acid
- 52. Bromine exists naturally as a mixture of bromine-79 and bromine-81 isotopes. An atom of bromine-79 contains
 - [A] 44 protons, 44 electrons, and 35 neutrons.
 - [B] 34 protons and 35 electrons, only. [C] 35 protons, 44 neutrons, 35 electrons.
 - [D] 35 protons, 79 neutrons, and 35 electrons.
 - [E] 79 protons, 79 electrons, and 35 neutrons.
- 53. Gallium consists of two isotopes of masses 68.95 amu and 70.95 amu with abundances of 60.16% and 39.84%, respectively. What is the average atomic mass of gallium?

[A] 69.55 [B] 70.15 [C] 71.95 [D] 69.75 [E] 69.95

Reference:	1.3
[1] [D]	
<u> </u>	-
	1.0
Reference:	1.2
[2] [A]	_
Reference:	1.5
[3] [D]	
	_
Reference:	1 4
[<u>4</u>] [<u>R</u>]	
ניז [ח]	_
Reference:	1.5
[5] <u>[B]</u>	_
Reference:	1.5
[6] [C]	
Reference:	158
[7] [B]	1.5,0
	_
-	
Reference:	1.5
[8] <u>[E]</u>	_
Reference:	1.3
[9] [C]	
	_
Reference	15
	1.0
	_
-	
Reference:	1.5
[11] [A]	

Reference: 1.5			
[12] <u>[C]</u>			
Reference: 1.3			
[13] [B]			
Reference: 1.3			
[14] <u>[E]</u>			
Reference: 1.3			
[15] [A]			
Reference: 1.3			
[16] <u>[D]</u>			
Reference: 1.3			
[17] [E]			
Defense 16			
Reference: 1.6			
[18] <u>[E]</u>			
Reference: 1.6			
[19] [B]			
Reference: 17			
[20] [A]			
Reference: 1.7			
[21] [C]			
Reference: 1.9			
[22] [D]			

Reference: 1.9 [23] [C] Reference: 1.9 [24] [E] Reference: 2.2 [25] [C]
[23] [C] Reference: 1.9 [24] [E] Reference: 2.2 [25] [C]
Reference: 1.9 [24] [E] Reference: 2.2 [25] [C]
Reference: 1.9 [24] [E] Reference: 2.2 [25] [C]
Reference: 1.9 [24] [E] Reference: 2.2 [25] [C]
[24] [E] Reference: 2.2 [25] [C]
Reference: 2.2 [25] [C]
Reference: 2.2 [25] [C]
[25] [<u>C</u>]
Reference: 2.3
[26] [<u>A</u>]
Reference: 2.1
[27] [C]
Reference: 2.2
[28] [A]
Reference: 2.4
[29] [D]
Reference: 2.4,5
[30] [D]
Deference 2.4
Reference: 2.4
[31] [D]
Reference: 2.8
[32] [A]
Reterence: 2.5
[33] <u>[B]</u>

Reference:	2.5
[34] [B]	
<u> </u>	_
Deferences	2.5
Kelerence:	2.5
[35] [C]	_
_	
Reference:	2.5
[36] <u>[E]</u>	
Reference:	2.5
[37] [D]	
	—
Pafaranaa	2.8
	2.0
[36] <u>[A]</u>	_
Reference:	2.7,2.8
[39] <u>[D]</u>	
Reference:	2.8
[40] [D]	
Reference:	2.8
[41] [D]	
	—
Pafaranaa	2.8
	2.0
[42] <u>[D]</u>	_
Reference:	2.8
[43] <u>[A]</u>	
Reference:	2.8
[44] [E]	

Reference: 2.8 [45] [A]

Reference: 2.8 [46] [C]

Reference: 2.5

	Symbol	# protons	# neutrons	# electrons	Net Charge
	²⁰⁶ ₈₂ Pb	82	124	82	0
	Ga	31	38	28	3+
	Те	52	75	54	2-
[47]	Mn	25	29	23	2+

Reference: 2.8

[48] carbon tetrachloride

Reference: 2.8 [49] dinitrogen trioxide

Reference: 2.8 [50] N₂O₃

Reference: 2.8

[51] CH₃COOH

Reference: 3.1 [52] [C]

Reference: 3.1 [53] [D]