\qquad
\qquad
\qquad

Chapter 11 Practice Test-2012

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. Some of the molecules found in the human body are NHCHCOOH (glycine), CHO (glucose), and $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{16} \mathrm{COOH}$ (stearic acid). The bonds they form are
a. covalent
c. metallic
b. ionic
d. nuclear
\qquad 2. $\mathrm{H}_{2} \mathrm{O}_{2}$, hydrogen peroxide, naturally breaks down into HO_{2} and O_{2} over time. MnO 2,manganese dioxide, can be used to lower the energy of activation needed for this reaction to take place and, thus, increase the rate of reaction. What type of substance is MnO_{2} ?
a. an inhibitor
c. a product
b. a catalyst
d. a reactant

$$
\mathrm{C}_{3} \mathrm{H}_{8}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

This chemical equation represents the combustion of propane. When correctly balanced, the coefficient for water is
a. 2
b. 4
c. 8
d. 16
4. Which of the following is a balanced equation for the combustion of ethanol $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right)$?
a. $\mathbf{C H}_{3} \mathrm{CH}_{2} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
b. $\mathbf{C H}_{3} \mathrm{CH}_{2} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
c. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
d. $\mathbf{C H}_{3} \mathrm{CH}_{2} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
\qquad 5. How many moles of $\mathbf{C H}_{4}$ are contained in $\mathbf{9 6 . 0}$ grams of $\mathbf{C H}$?
a. $\quad 16.00$ moles
b. $\quad 12.00$ moles
c. $\quad 6.00$ moles
d. $\quad 3.00$ moles
\qquad 6. How many atoms are in a chromium sample with a mass of $\mathbf{1 3}$ grams?
a. 1.5×10^{23}
b. $\quad 3.3 \times 10^{23}$
c. $\quad 1.9 \times 10^{26}$
d. $\quad 2.4 \times 10^{24}$
\qquad 7. How many moles of chlorine gas are contained in $9.03 \times 1 \mathbf{0}^{23}$ molecules?
a. $\quad 9.03$ moles
b. 6.02 moles
c. $\quad 2.0$ moles
d. $\quad 1.5$ moles

$$
\mathrm{Mg}_{3} \mathrm{~N}_{2}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow
$$

$$
2 \mathrm{NH}_{3}(\mathrm{aq})+3 \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})
$$

8.

Classify the following reaction.
a. combination
c. single replacement
b. double replacement
d. combustion
\qquad 9. What is the gram formula mass of chromium (III) oxalate?
a. $65 \mathrm{~g} / \mathrm{mol}$
b. $\quad 192 \mathrm{~g} / \mathrm{mol}$
c. $\quad 396 \mathrm{~g} / \mathrm{mol}$
d. $\quad 368 \mathrm{~g} / \mathrm{mol}$
10. What is the molar mass of calcium nitrate?
a. $\quad 70.1 \mathrm{~g} / \mathrm{mol}$
b. $\quad 74.1 \mathrm{~g} / \mathrm{mol}$
c. $\quad 164.1 \mathrm{~g} / \mathrm{mol}$
d. $\quad 204.1 \mathrm{~g} / \mathrm{mol}$
11. Under which of the following sets of conditions will a $\mathbf{0 . 5 0}$ mole sample of helium occupy a volume of 11.2 liters?
a. 298 K and 0.50 atm
b. $\quad 273 \mathrm{~K}$ and 1.50 atm
c. $\quad 373 \mathrm{~K}$ and 0.50 atm
d. $\quad 273 \mathrm{~K}$ and 1.0 atm
12. What is the density of $\mathbf{1}$ mole of NO_{2} gas at STP?
a. $2.05 \mathrm{~g} / \mathrm{L}$
b. $\quad 1.34 \mathrm{~g} / \mathrm{L}$
c. $\quad 1.03 \mathrm{~g} / \mathrm{L}$
d. $\quad 0.513 \mathrm{~g} / \mathrm{L}$
13. What is the volume of $\mathbf{2}$ moles of Nitrogen gas at STP?
a. $\quad 44.8 \mathrm{~L}$
b. $\quad 22.4 \mathrm{~L}$
c. $\quad 1.20 \times 10^{24} \mathrm{~L}$
d. $\quad 6.0 \times 10^{23} \mathrm{~L}$
14. Calculate oxygen's mass percent in aluminum sulfate.
a. 46%
c. 69%
b. 56%
d. Oxygen is not present in Aluminum Sulfate
15. What type of reaction is the reaction below?
a $\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow$ _b_Fe + _c_ O_{2}
a. Synthesis/Combination
c. Combustion
b. Decomposition
d. Single Replacement
16. What type of reaction is the reaction below?

$$
{ }_{-} \mathbf{a}_{-} \mathrm{Al}+\mathbf{b}_{-} \mathrm{CuSO}_{4} \rightarrow \text { _c_ } \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+{ }_{-} \mathbf{d}_{-} \mathrm{Cu}
$$

a. Synthesis/Combination
c. Double Replacement
b. Decomposition
d. Single Replacement
17. What type of reaction is the reaction below?
${ }_{-} \mathbf{a}_{-} \mathrm{NaF}+{ }_{-} \mathrm{b}_{-} \mathrm{AgNO}_{3} \rightarrow$?
a. Double Replacement
c. Synthesis/Combination
b. Decomposition
d. Single Replacement
18. What type of reaction is the reaction below?
_a_Mg+_b_ $\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$?
a. Double Replacement
c. Synthesis/Combination
b. Decomposition
d. Single Replacement
19. Select the set of coefficients that properly balance the equation below.

$$
__{-} \mathbf{F e}_{2} \mathrm{O}_{3} \rightarrow \text { _b_Fe + _c_ } \mathrm{O}_{2}
$$

a. $2,4,3$
c. $1,2,3$
b. 2, 2, 3
d. $3,4,4$
20. Select the set of coefficients that properly balance the equation below.
a $\mathbf{P b}\left(\mathrm{NO}_{3}\right)_{2}+{ }_{-} \mathbf{b}_{-} \mathrm{NH}_{4} \mathrm{Cl} \rightarrow{ }_{-} \mathbf{c}_{-} \mathrm{PbCl}_{2}+_{-} \mathbf{d}_{-} \mathrm{NH}_{4} \mathrm{NO}_{3}$
a. $1,2,1,2$
b. $1,2,2,1$
c. $2,1,2,1$
d. $1,2,2,2$
21. The products created from the reactants below would be:
_a_NaF + _b_ $\mathrm{AgNO}_{3} \rightarrow$?
a. $\mathrm{NaNO}_{3}, \mathrm{AgF}$
b. $\mathrm{FNO}_{3}, \mathrm{NaAg}$
c. $\mathrm{Na}_{3} \mathrm{~N}, \mathrm{AgF}, \mathrm{O}_{2}$
d. $\mathrm{NaNO}, \mathrm{AgF}, \mathrm{O}_{2}$
22. The products created from the reactants below would be:
_a_Mg +_b_ $\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$?
a. Manganese Sulfate and Hydrogen
c. Magnesium Sulfate and Hydrogen Gas Gas
b. Manganese Hydride and Sulfur Tetroxide Gas
d. Magnesium Hydride and Sulfur Tetroxide Gas
23. The products created from the reactants below would be:
_a_MgO + _b_ $\mathrm{H}_{2} \mathrm{O} \rightarrow$?
a. $\mathrm{Mg}(\mathrm{OH})_{2}$
b. $\mathrm{Mg}(\mathrm{OH})_{2}+\mathbf{H}_{2}$
c. $\mathbf{M g O}+\mathbf{H}_{2}$
d. $\mathbf{M g O H}+\mathbf{H}_{2}$
24. The products created from the reactants below would be:
a $\mathrm{SO}_{2}+{ }_{-} \mathrm{b}_{-} \mathrm{H}_{2} \mathrm{O} \rightarrow$?
a. $\mathrm{H}_{2} \mathrm{SO}_{3}$
b. $\mathrm{H}_{2} \mathrm{SO}_{3}+\mathrm{H}_{2}$
c. $\mathrm{H}_{2} \mathbf{S O}_{2}+\mathbf{H}_{2}$
d. $\mathrm{HSO}+\mathbf{H}_{2}$
25. The products created from the reactants below would be:

$$
\text { _a_ } \mathrm{CH}_{3} \mathrm{OH}+{ }^{-} \mathrm{b}_{-} \mathrm{O}_{2} \mathrm{O} \rightarrow \text { ? }
$$

a. $\mathrm{CO}_{2}+\mathbf{O H}$
b. $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathbf{O}$
c. CO_{2}
d. $\mathrm{CO}_{2}+\mathbf{H}_{2}$
\qquad 26. An acid and base form what products?
a. water
c. water + salt
b. salt
d. hydrogen gas + salt
\qquad 27. The products created from the reactants below would be:
_a_Li + _b_ $\mathrm{H}_{2} \mathrm{O} \rightarrow$?
a. $\mathrm{Li}_{2} \mathrm{O}+\mathrm{H}_{2}$
b. $\mathrm{LiO}+\mathrm{H}_{2}$
c. $\mathrm{Li}(\mathrm{OH})_{2}+\mathrm{H}_{2}$
d. $\mathrm{LiOH}+\mathrm{H}_{2}$
28. The correct balanced equation for the reaction below is:
_a_K $_{-}$_b_ $_{\mathbf{H}} \mathbf{O} \rightarrow$?
a. 2,2,2,1
c. $2,1,1,1$
b. 2,2,1,1
d. 2,1,1,2
29. Chlorine Gas is bubbled through a solution of calcium bromide at room temperature. Choose all the correct product(s) for the reaction.
a. $\quad \mathrm{Br}_{2}(\mathrm{~s})$
b. $\quad \mathrm{Br}_{2}+\mathrm{CaCl}_{2(\mathrm{l})}$
c. $\quad \mathrm{BrCl}_{(\mathrm{aq})}$
d. $\quad \mathrm{CaCl}+\mathrm{Br}_{2}$
30. A flaming splint of wood is extinguished by what gas?
a. carbon dioxide
c. water
b. oxygen
d. hydrogen
31. A glowing splint of wood ignites from what gas?
a. carbon dioxide
c. water
b. oxygen
d. hydrogen
32. Phenolphthalein indicator turns pink from the presence of a:
a. base
c. acid
b. oxygen
d. water
33. $\mathrm{Cu}_{(\mathrm{s})}+\mathbf{O}_{2(\mathrm{~g})} \rightarrow$ \qquad
Assume that copper will form a +2 ion
a. Copper (I) Oxide
c. Copper (III) Oxide
b. Copper (II) Oxide
d. Copper Monoxide
34. Two reactants are combined to produce a salt and water; these are the products of a reaction between:
a. a nonmetallic oxide and water
c. an acid and a base
b. a metallic oxide and water
d. a carbohydrate and oxygen
35. _a_ $\mathbf{L i O H}+{ }_{-} \mathbf{b}_{-} \mathbf{H}_{3} \mathrm{PO}_{4} \rightarrow$? + ? +...

This reaction represents a special (exceptional) case of a reaction, which is the:
a. formation of an acid
c. acid-base neutralization
b. formation of a base
d. formation of hydrogen gas
36.

Hydrogen peroxide breaks down in the presence of mangenese dioxide to produce:
a. $\quad \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{MnO}_{3(\mathrm{~g})}$
b. $\quad \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})}$
c. $\quad \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{O}_{2(\mathrm{~g})}$
d. $\quad \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{MnO}_{2(\mathrm{~g})}$

Chapter 11 Practice Test-2012
Answer Section

MULTIPLE CHOICE

1. ANS: A	PTS: 1
2. ANS: B	PTS: 1
3. ANS: B	PTS: 1
4. ANS: B	PTS: 1
5. ANS: C	PTS: 1
6. ANS: A	PTS: 1
7. ANS: D	PTS: 1
8. ANS: B	PTS: 1
9. ANS: D	PTS:
10. ANS: C	PTS: 1
11. ANS: D	PTS: 1
12. ANS: A	PTS:
13. ANS: A	PTS: 1
14. ANS: B	PTS:
15. ANS: B	PTS:
16. ANS: D	PTS: 1
17. ANS: A	PTS:
18. ANS: D	PTS:
19. ANS: A	PTS: 1
20. ANS: A	PTS: 1
21. ANS: A	PTS: 1
22. ANS: C	PTS: 1
23. ANS: A	PTS: 1
24. ANS: A	PTS: 1
25. ANS: B	PTS: 1
26. ANS: C	PTS: 1
27. ANS: D	PTS:
28. ANS: A	PTS: 1
29. ANS: B	PTS: 1
30. ANS: A	PTS: 1
31. ANS: B	PTS: 1
32. ANS: A	PTS: 1
33. ANS: B	PTS:
34. ANS: C	PTS: 1
35. ANS: C	PTS: 1
36. ANS: B	PTS:

KEY: Mass to Moles
KEY: Mass to Representative Particles
KEY: Representative Particles to Moles

KEY: molar mass(GFM) from name
KEY: molar mass(GFM) from name
KEY: Molar Volume of a gas at STP
KEY: density of a gas at STP; molar mass; molar volume
KEY: molar volume
KEY: Percent Composition
KEY: Types of Reactions; Decomposition
KEY: Types of Reactions; Single Replacement
KEY: Types of Reactions; Double Replacement
KEY: Types of Reactions; Single Replacement
KEY: Balancing Equations
KEY: Balancing Equations
KEY: Predicting Products
KEY: Single Replacement;
KEY: Single Replacement;
KEY: Single Replacement;
KEY: Single Replacement;
KEY: Volume to Moles; Molar Volume
KEY: Predicting Products

